Math Problem Statement

Suppose a particle moves along a straight line with a velocity v(t) = (t^2)(e^(-3t)) meters per second after t seconds. It travels how many meters during the first t seconds?

Solution

To find how many meters the particle travels during the first tt seconds, we need to calculate the definite integral of the velocity function v(t)v(t) over the interval [0,t][0, t]. This gives the displacement:

s(t)=0tv(x)dx=0tx2e3xdxs(t) = \int_0^t v(x) \, dx = \int_0^t x^2 e^{-3x} \, dx

Step 1: Set up the integral

The integral to evaluate is:

0tx2e3xdx\int_0^t x^2 e^{-3x} \, dx

Step 2: Use integration by parts

We use integration by parts, where: udv=uvvdu\int u \, dv = uv - \int v \, du Let:

  • u=x2u = x^2 (so du=2xdxdu = 2x \, dx)
  • dv=e3xdxdv = e^{-3x} \, dx (so v=e3x3=13e3xv = \frac{e^{-3x}}{-3} = -\frac{1}{3} e^{-3x})

Substitute into the formula:

x2e3xdx=x23e3x+2x3e3xdx\int x^2 e^{-3x} \, dx = -\frac{x^2}{3} e^{-3x} + \int \frac{2x}{3} e^{-3x} \, dx

Step 3: Repeat integration by parts for the remaining integral

For 2x3e3xdx\int \frac{2x}{3} e^{-3x} \, dx, let:

  • u=xu = x (so du=dxdu = dx)
  • dv=e3xdxdv = e^{-3x} \, dx (so v=13e3xv = -\frac{1}{3} e^{-3x})

Substitute again:

xe3xdx=x3e3x+13e3xdx\int x e^{-3x} \, dx = -\frac{x}{3} e^{-3x} + \int \frac{1}{3} e^{-3x} \, dx

The final term is a straightforward integral:

e3xdx=e3x3=13e3x\int e^{-3x} \, dx = \frac{e^{-3x}}{-3} = -\frac{1}{3} e^{-3x}

Thus: xe3xdx=x3e3x19e3x\int x e^{-3x} \, dx = -\frac{x}{3} e^{-3x} - \frac{1}{9} e^{-3x}

Step 4: Combine results

Now substitute back into the original integral: x2e3xdx=x23e3x+23(x3e3x19e3x)\int x^2 e^{-3x} \, dx = -\frac{x^2}{3} e^{-3x} + \frac{2}{3} \left( -\frac{x}{3} e^{-3x} - \frac{1}{9} e^{-3x} \right)

Simplify: x2e3xdx=x23e3x2x9e3x227e3x\int x^2 e^{-3x} \, dx = -\frac{x^2}{3} e^{-3x} - \frac{2x}{9} e^{-3x} - \frac{2}{27} e^{-3x}

Factor out e3xe^{-3x}: x2e3xdx=e3x(x232x9227)\int x^2 e^{-3x} \, dx = e^{-3x} \left( -\frac{x^2}{3} - \frac{2x}{9} - \frac{2}{27} \right)

Step 5: Apply limits

Evaluate the definite integral over [0,t][0, t]: s(t)=[e3x(x232x9227)]0ts(t) = \left[ e^{-3x} \left( -\frac{x^2}{3} - \frac{2x}{9} - \frac{2}{27} \right) \right]_0^t

At x=0x = 0, the expression becomes 0 because e30=1e^{-3 \cdot 0} = 1, but all terms involving xx vanish.

Thus: s(t)=e3t(t232t9227)0s(t) = e^{-3t} \left( -\frac{t^2}{3} - \frac{2t}{9} - \frac{2}{27} \right) - 0

Simplify: s(t)=e3t(t232t9227)s(t) = e^{-3t} \left( -\frac{t^2}{3} - \frac{2t}{9} - \frac{2}{27} \right)

This is the displacement of the particle during the first tt seconds.


Would you like to see a numerical example or further details? 😊

Related Questions:

  1. How is integration by parts applied to more complex functions?
  2. Can you explain the physical significance of definite integrals in kinematics?
  3. What if the velocity function were sinusoidal instead of exponential?
  4. How does one compute such integrals numerically if they are hard to solve analytically?
  5. What happens to the particle’s displacement as tt \to \infty?

Tip:

When solving integrals involving products of polynomials and exponentials, integration by parts is usually the go-to method!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Kinematics

Formulas

s(t) = ∫_0^t v(x) dx
Integration by Parts

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12