Math Problem Statement
solve by trick full answer x^2 +4 / (x-2)(x-3)^2 ChatGPT said: ChatGPT Let's solve the expression
𝑥 2 + 4 ( 𝑥 − 2 ) ( 𝑥 − 3 ) 2 (x−2)(x−3) 2
x 2 +4
using the partial fraction decomposition method, along with some substitutions to quickly find the values of constants.
Step 1: Set Up Partial Fractions The decomposition for the given expression will be:
𝑥 2 + 4 ( 𝑥 − 2 ) ( 𝑥 − 3 ) 2
𝐴 𝑥 − 2 + 𝐵 𝑥 − 3 + 𝐶 ( 𝑥 − 3 ) 2 (x−2)(x−3) 2
x 2 +4
x−2 A + x−3 B + (x−3) 2
C
Step 2: Eliminate the Denominator Multiply both sides by the denominator ( 𝑥 − 2 ) ( 𝑥 − 3 ) 2 (x−2)(x−3) 2 :
𝑥 2 + 4
𝐴 ( 𝑥 − 3 ) 2 + 𝐵 ( 𝑥 − 2 ) ( 𝑥 − 3 ) + 𝐶 ( 𝑥 − 2 ) x 2 +4=A(x−3) 2 +B(x−2)(x−3)+C(x−2) Step 3: Expand the Right-Hand Side Expand 𝐴 ( 𝑥 − 3 ) 2 A(x−3) 2 :
𝐴 ( 𝑥 2 − 6 𝑥 + 9 )
𝐴 𝑥 2 − 6 𝐴 𝑥 + 9 𝐴 A(x 2 −6x+9)=Ax 2 −6Ax+9A Expand 𝐵 ( 𝑥 − 2 ) ( 𝑥 − 3 ) B(x−2)(x−3):
𝐵 ( 𝑥 2 − 5 𝑥 + 6 )
𝐵 𝑥 2 − 5 𝐵 𝑥 + 6 𝐵 B(x 2 −5x+6)=Bx 2 −5Bx+6B Expand 𝐶 ( 𝑥 − 2 ) C(x−2):
𝐶 𝑥 − 2 𝐶 Cx−2C Now combine these to form:
𝑥 2 + 4
( 𝐴 + 𝐵 ) 𝑥 2 + ( − 6 𝐴 − 5 𝐵 + 𝐶 ) 𝑥 + ( 9 𝐴 + 6 𝐵 − 2 𝐶 ) x 2 +4=(A+B)x 2 +(−6A−5B+C)x+(9A+6B−2C) Step 4: Set Up a System of Equations Now, we compare coefficients from both sides:
For 𝑥 2 x 2 :
𝐴 + 𝐵
1 (1) A+B=1(1) For 𝑥 x:
− 6 𝐴 − 5 𝐵 + 𝐶
0 (2) −6A−5B+C=0(2) For the constant term:
9 𝐴 + 6 𝐵 − 2 𝐶
4 (3) 9A+6B−2C=4(3) Step 5: Solve the Equations Using Substitutions:
Substituting 𝑥
2 x=2:
2 2 + 4 ( 2 − 2 ) ( 2 − 3 ) 2 is undefined, but we can get 𝐶 (2−2)(2−3) 2
2 2 +4 is undefined, but we can get C Setting 𝑥
2 x=2 in the equation gives:
4
𝐴 ( 2 − 3 ) 2 + 𝐵 ( 2 − 2 ) ( 2 − 3 ) + 𝐶 ( 2 − 2 ) 4=A(2−3) 2 +B(2−2)(2−3)+C(2−2) This tells us 𝐴 ( − 1 ) 2
4 A(−1) 2 =4 thus 𝐴
4 A=4.
Substituting 𝑥
3 x=3:
3 2 + 4 ( 3 − 2 ) ( 3 − 3 ) 2 is undefined, but we can solve for 𝐵 (3−2)(3−3) 2
3 2 +4 is undefined, but we can solve for B Setting 𝑥
3 x=3 gives:
9 + 4
𝐴 ( 0 ) + 𝐵 ( 3 − 2 ) ( 0 ) + 𝐶 ( 3 − 2 ) 9+4=A(0)+B(3−2)(0)+C(3−2) So:
13
𝐶 ⟹ 𝐶
13 13=C⟹C=13 Now substitute 𝐴
4 A=4 and 𝐶
13 C=13 into equation (1):
4 + 𝐵
1 ⟹ 𝐵
1 − 4
− 3 4+B=1⟹B=1−4=−3 Final Values of Constants 𝐴
4 A=4 𝐵
− 3 B=−3 𝐶
13 C=13 Step 6: Write the Partial Fraction Decomposition So, the partial fraction decomposition is:
𝑥 2 + 4 ( 𝑥 − 2 ) ( 𝑥 − 3 ) 2
4 𝑥 − 2 + − 3 𝑥 − 3 + 13 ( 𝑥 − 3 ) 2 (x−2)(x−3) 2
x 2 +4
x−2 4 + x−3 −3 + (x−3) 2
13
Final Answer 𝑥 2 + 4 ( 𝑥 − 2 ) ( 𝑥 − 3 ) 2
4 𝑥 − 2 − 3 𝑥 − 3 + 13 ( 𝑥 − 3 ) 2 (x−2)(x−3) 2
x 2 +4
x−2 4 − x−3 3 + (x−3) 2
13
This is the simplified form of the original expression using partial fraction decomposition!
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Partial Fraction Decomposition
Algebra
Rational Functions
Formulas
Partial fraction decomposition: A/(x - a) + B/(x - b) + C/(x - b)^2
Solving systems of linear equations
Quadratic expansion: (x - a)^2 = x^2 - 2ax + a^2
Theorems
Method of Partial Fractions
System of Linear Equations
Suitable Grade Level
Grades 10-12
Related Recommendation
Partial Fraction Decomposition of \( \frac{x + 3}{(x - 2)(x + 4)} \)
Partial Fraction Decomposition of Rational Expression (2x^2 + 3x + 5) / ((x+4)(x+5))
Decompose the Rational Expression x+3/3x²+4x+1 into Partial Fractions
Partial Fraction Decomposition of x²/(x⁴ - x² - 2)
Decomposition of the Rational Expression 3x^3 - 4x^2 - 21x + 46 / (x^2 - 4)(x - 2)