Math Problem Statement
Given ( F(s) = \frac{4s + 6}{s^2(s+1)} ), find the partial fraction decomposition laplace transform
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Partial Fraction Decomposition
Laplace Transform
Inverse Laplace Transform
Formulas
F(s) = \frac{4s + 6}{s^2(s+1)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s+1}
\mathcal{L}^{-1} \left\{ \frac{A}{s} \right\} = A
\mathcal{L}^{-1} \left\{ \frac{B}{s^2} \right\} = Bt
\mathcal{L}^{-1} \left\{ \frac{C}{s+1} \right\} = Ce^{-t}
Theorems
Laplace Transform Theorem
Inverse Laplace Transform Theorem
Suitable Grade Level
University (Calculus or Engineering level)
Related Recommendation
Inverse Laplace Transform of F(s) = (s^2 - 4) / (s^3 + 6s^2 + 9s)
Inverse Laplace Transform of 6/[(s^2-1)(s+2)] with Partial Fractions
Partial Fraction Decomposition of F(s) = (4s^2 - 5s - 1) / (s^2(s^2 + 9))
Inverse Laplace Transform of (s²-2s+4)/(s⁴+9s²) with Partial Fraction Decomposition
Partial Fraction Decomposition and Inverse Laplace Transform of (7s + 15) / (s^3 + 28s^2 + 228s + 576)