Math Problem Statement
The pareto's distribution with parameter (alpha > 0, and Beta >0) is defined by the pdf: F(x)=Ba^B/x^(B+1) A. Find the mean and variance of X
Solution
The probability density function (PDF) of the Pareto distribution is given by:
A. Finding the Mean of :
The mean of a continuous random variable is given by:
Substitute the PDF of the Pareto distribution into the formula:
Simplifying the expression:
= B a^B \int_{a}^{\infty} \frac{1}{x^B} dx = B a^B \int_{a}^{\infty} x^{-B} dx$$ The integral of $$x^{-B}$$ is given by: $$\int x^{-B} dx = \frac{x^{1-B}}{1-B}$$ Now applying the limits: $$\mathbb{E}(X) = B a^B \left[ \frac{x^{1-B}}{1-B} \right]_{x=a}^{\infty}$$ At $$x = \infty$$, the term $$\frac{1}{x^{B-1}} \to 0$$ for $$B > 1$$: $$\mathbb{E}(X) = B a^B \left( 0 - \frac{a^{1-B}}{1-B} \right) = B a^B \left( \frac{a^{1-B}}{B-1} \right) = \frac{a B a^{1-B}}{B-1} = \frac{a}{B-1}$$ Thus, the mean exists only when $$B > 1$$, and it is: $$\mathbb{E}(X) = \frac{a}{B-1}$$ ### B. Finding the Variance of $$X$$: The variance is given by: $$\text{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$ First, find $$\mathbb{E}(X^2)$$: $$\mathbb{E}(X^2) = \int_{a}^{\infty} x^2 f(x) dx = \int_{a}^{\infty} x^2 \frac{B a^B}{x^{B+1}} dx = B a^B \int_{a}^{\infty} x^{2-B} dx$$ The integral of $$x^{2-B}$$ is: $$\int x^{2-B} dx = \frac{x^{3-B}}{3-B}$$ Applying the limits: $$\mathbb{E}(X^2) = B a^B \left[ \frac{x^{3-B}}{3-B} \right]_{x=a}^{\infty}$$ At $$x = \infty$$, the term $$\frac{1}{x^{B-3}} \to 0$$ for $$B > 2$$: $$\mathbb{E}(X^2) = B a^B \left( 0 - \frac{a^{3-B}}{3-B} \right) = B a^B \left( \frac{a^{3-B}}{B-3} \right) = \frac{a^2}{B-2}$$ Thus, $$\mathbb{E}(X^2)$$ exists only when $$B > 2$$, and it is: $$\mathbb{E}(X^2) = \frac{a^2}{B-2}$$ Now, using the formula for variance: $$\text{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{a^2}{B-2} - \left( \frac{a}{B-1} \right)^2$$ Simplify the expression: $$\text{Var}(X) = \frac{a^2}{B-2} - \frac{a^2}{(B-1)^2} = a^2 \left( \frac{1}{B-2} - \frac{1}{(B-1)^2} \right)$$ Thus, the variance of $$X$$ is: $$\text{Var}(X) = a^2 \left( \frac{B-1 - (B-2)}{(B-2)(B-1)^2} \right) = a^2 \left( \frac{1}{(B-2)(B-1)^2} \right)$$ So the variance is: $$\text{Var}(X) = \frac{a^2}{(B-2)(B-1)^2}$$ This variance exists only when $$B > 2$$. ### Summary: 1. **Mean**: $$\mathbb{E}(X) = \frac{a}{B-1}$$, exists for $$B > 1$$. 2. **Variance**: $$\text{Var}(X) = \frac{a^2}{(B-2)(B-1)^2}$$, exists for $$B > 2$$. Would you like further clarification or details? --- Here are some related questions: 1. What happens to the mean and variance as $$B \to \infty$$? 2. Can we interpret the Pareto distribution's tail behavior for small values of $$B$$? 3. How is the Pareto distribution related to the power law distribution? 4. How can the Pareto distribution be applied in economics or risk management? 5. Can you derive the cumulative distribution function (CDF) of the Pareto distribution? **Tip:** The Pareto distribution is often used to model wealth distributions, where a small percentage of the population holds a large proportion of the wealth!Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Probability Theory
Pareto Distribution
Continuous Random Variables
Formulas
Mean: E(X) = ∫a^∞ x f(x) dx = a / (B - 1) for B > 1
Variance: Var(X) = E(X^2) - (E(X))^2 = a^2 / ((B - 2)(B - 1)^2) for B > 2
Theorems
Pareto Distribution
Expectation of Continuous Random Variables
Variance Formula
Suitable Grade Level
Undergraduate (Probability/Statistics)
Related Recommendation
Pareto Distribution Definition and Distribution Function Explained
Pareto Distribution and Probability Calculation for P(X > 20)
Mean, Variance, and Standard Deviation for f(x) = x * bx^(-1) on Interval (0, 2)
Moment Condition for Pareto Distribution: B > n
Probability Distribution Function and Variance Calculation