Math Problem Statement

ratkaise

Olkoon xy-tason käyrä. Määritä käyrää pisteessä (2e - 4, 3e) sivuavan käyrän tangentti. Anna ensin tangenttin kulmakerroin k ko. pisteessä. Määritä se parametri t arvo, jollee tangenttin kulmakerroin on 1. Yhtälö 4(xy² + y⁴)¹/₄ + xy - 16 = 0 määrittelee muuttujan y muuttujan x funktiona ( y = f(x)) pisteen (0, 4) ympäristössä. Määritä implisiittisen derivoimisen avulla y′(0).

Solution

This is a problem involving parametric equations and finding tangents, derivatives, and implicit derivatives. Let's break down the tasks and solve them step by step.

Part a:

We are given the parametric equations:

x(t)=tln(t)4x(t) = \sqrt{t} \ln(t) - 4 y(t)=3t,t>1y(t) = 3 \sqrt{t}, \quad t > 1

i) Finding the tangent line at the point (2e4,3e)(2e - 4, 3e)

First, we need to calculate the values of x(t)x(t) and y(t)y(t) at the given tt-values to find the coordinates where the tangent is.

We'll calculate the derivative dydx\frac{dy}{dx}, which is the slope of the tangent at any point. To do this, we use the chain rule:

dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}

  • First, differentiate x(t)x(t) and y(t)y(t) with respect to tt: dxdt=ddt(tln(t)4)\frac{dx}{dt} = \frac{d}{dt} (\sqrt{t} \ln(t) - 4) dydt=ddt(3t)\frac{dy}{dt} = \frac{d}{dt} (3 \sqrt{t})

Then, calculate the tangent slope at the point tt corresponding to x(t)=2e4x(t) = 2e - 4 and y(t)=3ey(t) = 3e.

ii) Determining tt for which the tangent line has a slope of 1

Here, we need to solve for tt when the slope dydx=1\frac{dy}{dx} = 1.

I'll start solving for the derivatives and find the values of tt for these tasks. Let me compute the necessary derivatives and proceed with solving. sympy import symbols, sqrt, log, diff, Eq, solve

Define variable

t = symbols('t')

Define the parametric equations

x_t = sqrt(t) * log(t) - 4 y_t = 3 * sqrt(t)

Compute the derivatives dx/dt and dy/dt

dx_dt = diff(x_t, t) dy_dt = diff(y_t, t)

Find dy/dx (slope of the tangent)

dy_dx = dy_dt / dx_dt

Calculate the derivative expressions

dx_dt, dy_dt, dy_dx

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Tangents
Derivatives
Implicit Differentiation

Formulas

dy/dx = (dy/dt) / (dx/dt)
Implicit Differentiation

Theorems

Chain Rule
Implicit Differentiation Theorem

Suitable Grade Level

Grades 10-12