Math Problem Statement

thickwalll cylinder has an inner diameter of 100mm and outer diameter of 200mm. the yield strength of material is 200mpa. the internal pressure is 120 mpa. calculate the outer pressure so that the materials will not fail due to yield based on maximum shear stress theory.

Solution

The maximum shear stress theory (also known as the Tresca criterion) states that failure occurs when the maximum shear stress in a material reaches half of its yield strength. We can use this criterion to determine the required outer pressure so that the material does not fail.

Here's the detailed solution:

Given Data:

  • Inner diameter, di=100mmd_i = 100 \, \text{mm}
  • Outer diameter, do=200mmd_o = 200 \, \text{mm}
  • Yield strength of the material, σy=200MPa\sigma_y = 200 \, \text{MPa}
  • Internal pressure, pi=120MPap_i = 120 \, \text{MPa}
  • Outer pressure, po=?p_o = ?

Step 1: Convert the Diameters to Radii

  • Inner radius ri=di2=1002=50mmr_i = \frac{d_i}{2} = \frac{100}{2} = 50 \, \text{mm}
  • Outer radius ro=do2=2002=100mmr_o = \frac{d_o}{2} = \frac{200}{2} = 100 \, \text{mm}

Step 2: Maximum Shear Stress Theory (Tresca Criterion)

The maximum shear stress τmax\tau_{\text{max}} in a thick-walled cylinder under internal and external pressure is given by: τmax=σmaxσmin2\tau_{\text{max}} = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{2} where σmax\sigma_{\text{max}} and σmin\sigma_{\text{min}} are the maximum and minimum principal stresses in the cylinder wall.

For a thick-walled cylinder under pressure, the radial and tangential (hoop) stresses at any radius rr are given by Lame’s Equations:

  1. Radial Stress: σr=piri2poro2ro2ri2+(popi)ri2ro2(ro2ri2)r2\sigma_r = \frac{p_i r_i^2 - p_o r_o^2}{r_o^2 - r_i^2} + \frac{(p_o - p_i) r_i^2 r_o^2}{(r_o^2 - r_i^2) r^2}
  2. Hoop (Circumferential) Stress: σθ=piri2poro2ro2ri2(popi)ri2ro2(ro2ri2)r2\sigma_{\theta} = \frac{p_i r_i^2 - p_o r_o^2}{r_o^2 - r_i^2} - \frac{(p_o - p_i) r_i^2 r_o^2}{(r_o^2 - r_i^2) r^2}

At the inner radius r=rir = r_i, the stresses are:

  • Radial stress σr(ri)=pi\sigma_r(r_i) = -p_i (since it's subjected to the internal pressure)
  • Hoop stress σθ(ri)=piro2+pori2ro2ri2\sigma_{\theta}(r_i) = \frac{p_i r_o^2 + p_o r_i^2}{r_o^2 - r_i^2}

Step 3: Applying the Tresca Criterion for Yield

According to the Tresca criterion, failure will occur if: τmax=σθ(ri)σr(ri)2=σy2\tau_{\text{max}} = \frac{\sigma_{\theta}(r_i) - \sigma_r(r_i)}{2} = \frac{\sigma_y}{2} Substitute σr(ri)=pi\sigma_r(r_i) = -p_i and σθ(ri)=piro2+pori2ro2ri2\sigma_{\theta}(r_i) = \frac{p_i r_o^2 + p_o r_i^2}{r_o^2 - r_i^2} into this equation: piro2+pori2ro2ri2+pi2=σy2\frac{\frac{p_i r_o^2 + p_o r_i^2}{r_o^2 - r_i^2} + p_i}{2} = \frac{\sigma_y}{2} Solving for pop_o: piro2+pori2+pi(ro2ri2)ro2ri2=σy\frac{p_i r_o^2 + p_o r_i^2 + p_i (r_o^2 - r_i^2)}{r_o^2 - r_i^2} = \sigma_y

Substitute values to calculate

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Solid Mechanics
Stress Analysis
Pressure Calculation

Formulas

Maximum shear stress formula: τ_max = (σ_max - σ_min) / 2
Lame's equation for radial stress: σ_r = (p_i r_i^2 - p_o r_o^2) / (r_o^2 - r_i^2) + ((p_o - p_i) r_i^2 r_o^2) / ((r_o^2 - r_i^2) r^2)
Lame's equation for hoop stress: σ_θ = (p_i r_i^2 - p_o r_o^2) / (r_o^2 - r_i^2) - ((p_o - p_i) r_i^2 r_o^2) / ((r_o^2 - r_i^2) r^2)

Theorems

Tresca Criterion (Maximum Shear Stress Theory)

Suitable Grade Level

Undergraduate Engineering