Math Problem Statement
A rectangle in the first quadrant is inscribed with its base on the x-axis and its upper corners on the parabola y = 3600 - x^2 -. What are the dimensions of such a rectangle with the greatest possible area? [A] First, find the area as a function of x: A(x) = [B] Find the domain of A in the context of the problem. Domain: [C] Find A' (x) А' (x) = [D] Find the critical value(s) within the appropriate domain of A. No decimal entries allowed. [E] Determine where A is increasing and where A is decreasing on its appropriate domain. Increasing: Decreasing: [F] What is the best conclusion with regards to an absolute extrema at the critical value. • Since the A goes from increasing to decreasing, by the first derivative test we have an absolute maximum at the critical value O The results are inclusive, another test besides the first derivative needs to be performed in order to determine if there is an absolute maximum or minimum at the critical value • Since the A goes from decreasing to decreasing, by the first derivative test we have an absolute maximum at the critical value • Since the A goes from decreasing to increasing, by the first derivative test we have an absolute minimum at the critical value • Since the A goes from increasing to decreasing, by the first derivative test we have an absolute minimum at the critical value [G] What is the maximize area of the rectangle. No decimal entries allowed. Maximum Area =
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Quadratic Equations
Derivatives
Optimization
Formulas
Area of a rectangle
Parabola equation
Derivative of a polynomial
Theorems
First derivative test
Suitable Grade Level
Advanced High School
Related Recommendation
Finding Maximum Area of Rectangle under Parabola y = 64 - x^2
Finding the Minimum Area of a Triangle Formed by a Tangent Line to a Parabola
Maximizing the Area of a Rectangle under a Parabola y = 8 - x^2
Finding the Shorter Dimension of a Rectangle within a Parabola y = 4 - x^2
Maximizing Rectangle Area Under Parabola y = 8 - x^2