Math Problem Statement

Find the following for the given functions f(x) = 9x + 1 and g(x) = x^2 - 4: (a) (f + g)(x), (b) (f - g)(x), (c) (fg)(x), (d) (f/g)(x), and determine the domain of f/g using interval notation.

Solution

Problem Analysis:

The problem asks us to evaluate the following operations for two functions:

  • f(x)=9x+1f(x) = 9x + 1
  • g(x)=x24g(x) = x^2 - 4

We need to compute:

  1. (f+g)(x)(f + g)(x)
  2. (fg)(x)(f - g)(x)
  3. (fg)(x)(fg)(x)
  4. fg(x)\frac{f}{g}(x)
  5. The domain of fg\frac{f}{g} in interval notation.

Step-by-Step Solutions:

(a) (f+g)(x)=f(x)+g(x)(f + g)(x) = f(x) + g(x)

f(x)+g(x)=(9x+1)+(x24)f(x) + g(x) = (9x + 1) + (x^2 - 4) (f+g)(x)=x2+9x3(f + g)(x) = x^2 + 9x - 3


(b) (fg)(x)=f(x)g(x)(f - g)(x) = f(x) - g(x)

f(x)g(x)=(9x+1)(x24)f(x) - g(x) = (9x + 1) - (x^2 - 4) (fg)(x)=x2+9x+5(f - g)(x) = -x^2 + 9x + 5


(c) (fg)(x)=f(x)g(x)(fg)(x) = f(x) \cdot g(x)

f(x)g(x)=(9x+1)(x24)f(x) \cdot g(x) = (9x + 1) \cdot (x^2 - 4) Using the distributive property: (fg)(x)=(9x)(x24)+(1)(x24)(fg)(x) = (9x)(x^2 - 4) + (1)(x^2 - 4) (fg)(x)=9x336x+x24(fg)(x) = 9x^3 - 36x + x^2 - 4 (fg)(x)=9x3+x236x4(fg)(x) = 9x^3 + x^2 - 36x - 4


(d) fg(x)=f(x)g(x)\frac{f}{g}(x) = \frac{f(x)}{g(x)}

f(x)g(x)=9x+1x24\frac{f(x)}{g(x)} = \frac{9x + 1}{x^2 - 4}


Domain of fg\frac{f}{g}

The domain of fg\frac{f}{g} excludes values of xx that make the denominator g(x)=0g(x) = 0: g(x)=x24=0g(x) = x^2 - 4 = 0 x2=4x=±2x^2 = 4 \quad \Rightarrow \quad x = \pm 2

Thus, the domain is all real numbers except x=±2x = \pm 2. In interval notation: (,2)(2,2)(2,)(-\infty, -2) \cup (-2, 2) \cup (2, \infty)


Final Answers:

(a) (f+g)(x)=x2+9x3(f + g)(x) = x^2 + 9x - 3
(b) (fg)(x)=x2+9x+5(f - g)(x) = -x^2 + 9x + 5
(c) (fg)(x)=9x3+x236x4(fg)(x) = 9x^3 + x^2 - 36x - 4
(d) fg(x)=9x+1x24\frac{f}{g}(x) = \frac{9x + 1}{x^2 - 4}
Domain of fg\frac{f}{g}: (,2)(2,2)(2,)(-\infty, -2) \cup (-2, 2) \cup (2, \infty).


Would you like further details or clarification? Let me know!
Here are 5 related questions to expand your understanding:

  1. How do you determine the domain of a composite function?
  2. What are the steps for simplifying rational functions?
  3. Can you verify the results by substituting specific values for xx?
  4. How would the domain change if f(x)f(x) or g(x)g(x) had additional restrictions?
  5. How do you graph fg(x)\frac{f}{g}(x) and its domain on a coordinate plane?

Tip: Always factorize the denominator to find excluded values for rational functions efficiently!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Operations on Functions
Domains of Rational Functions

Formulas

Addition of functions: (f + g)(x) = f(x) + g(x)
Subtraction of functions: (f - g)(x) = f(x) - g(x)
Multiplication of functions: (fg)(x) = f(x) * g(x)
Division of functions: (f/g)(x) = f(x) / g(x), g(x) ≠ 0

Theorems

The domain of a function excludes values that make the denominator zero.

Suitable Grade Level

Grades 9-12