Math Problem Statement

For the given functions f and​ g, complete parts​ (a)-(h). For parts​ (a)-(d), also find the domain. f left parenthesis x right parenthesis equals x minus 8​; g left parenthesis x right parenthesis equals 9 x squared

Solution

We are given two functions:

  • f(x)=x8f(x) = x - 8
  • g(x)=9x2g(x) = 9x^2

Let's go through parts (a)-(h) systematically:


(a) (f+g)(x)(f+g)(x) and its domain:

Step 1: Find (f+g)(x)(f+g)(x)

(f+g)(x)=f(x)+g(x)=(x8)+(9x2)(f+g)(x) = f(x) + g(x) = (x - 8) + (9x^2) (f+g)(x)=9x2+x8(f+g)(x) = 9x^2 + x - 8

Step 2: Find the domain

Since both f(x)=x8f(x) = x - 8 and g(x)=9x2g(x) = 9x^2 are polynomials, they are defined for all real values of xx. Therefore, the domain is:

Domain of (f+g)(x):(,)\text{Domain of } (f+g)(x): (-\infty, \infty)


(b) (fg)(x)(f-g)(x) and its domain:

Step 1: Find (fg)(x)(f-g)(x)

(fg)(x)=f(x)g(x)=(x8)(9x2)(f-g)(x) = f(x) - g(x) = (x - 8) - (9x^2) (fg)(x)=9x2+x8(f-g)(x) = -9x^2 + x - 8

Step 2: Find the domain

Again, since f(x)f(x) and g(x)g(x) are polynomials, their difference is also defined for all real numbers. So, the domain is:

Domain of (fg)(x):(,)\text{Domain of } (f-g)(x): (-\infty, \infty)


(c) (fg)(x)(fg)(x) and its domain:

Step 1: Find (fg)(x)(fg)(x)

(fg)(x)=f(x)g(x)=(x8)(9x2)(fg)(x) = f(x) \cdot g(x) = (x - 8) \cdot (9x^2) (fg)(x)=9x2(x8)=9x372x2(fg)(x) = 9x^2(x - 8) = 9x^3 - 72x^2

Step 2: Find the domain

As both f(x)f(x) and g(x)g(x) are polynomials, their product is also a polynomial, which is defined for all real numbers. So, the domain is:

Domain of (fg)(x):(,)\text{Domain of } (fg)(x): (-\infty, \infty)


(d) (fg)(x)\left(\frac{f}{g}\right)(x) and its domain:

Step 1: Find (fg)(x)\left(\frac{f}{g}\right)(x)

(fg)(x)=f(x)g(x)=x89x2\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x - 8}{9x^2}

Step 2: Find the domain

For the quotient f(x)g(x)\frac{f(x)}{g(x)}, we must exclude any xx that makes g(x)=9x2=0g(x) = 9x^2 = 0. Solving for xx:

9x2=0x=09x^2 = 0 \quad \Rightarrow \quad x = 0

Thus, the domain excludes x=0x = 0. The domain is:

Domain of (fg)(x):(,0)(0,)\text{Domain of } \left(\frac{f}{g}\right)(x): (-\infty, 0) \cup (0, \infty)


(e) f(3)f(3)

Substitute x=3x = 3 into f(x)f(x): f(3)=38=5f(3) = 3 - 8 = -5


(f) g(3)g(3)

Substitute x=3x = 3 into g(x)g(x): g(3)=9(3)2=9×9=81g(3) = 9(3)^2 = 9 \times 9 = 81


(g) (f+g)(3)(f+g)(3)

Substitute x=3x = 3 into (f+g)(x)=9x2+x8(f+g)(x) = 9x^2 + x - 8: (f+g)(3)=9(3)2+38=9×9+38=81+38=76(f+g)(3) = 9(3)^2 + 3 - 8 = 9 \times 9 + 3 - 8 = 81 + 3 - 8 = 76


(h) (fg)(3)\left(\frac{f}{g}\right)(3)

Substitute x=3x = 3 into (fg)(x)=x89x2\left(\frac{f}{g}\right)(x) = \frac{x - 8}{9x^2}: (fg)(3)=389(3)2=59×9=581\left(\frac{f}{g}\right)(3) = \frac{3 - 8}{9(3)^2} = \frac{-5}{9 \times 9} = \frac{-5}{81}


Summary:

  • (a) (f+g)(x)=9x2+x8(f+g)(x) = 9x^2 + x - 8, domain: (,)(-\infty, \infty)
  • (b) (fg)(x)=9x2+x8(f-g)(x) = -9x^2 + x - 8, domain: (,)(-\infty, \infty)
  • (c) (fg)(x)=9x372x2(fg)(x) = 9x^3 - 72x^2, domain: (,)(-\infty, \infty)
  • (d) (fg)(x)=x89x2\left(\frac{f}{g}\right)(x) = \frac{x - 8}{9x^2}, domain: (,0)(0,)(-\infty, 0) \cup (0, \infty)
  • (e) f(3)=5f(3) = -5
  • (f) g(3)=81g(3) = 81
  • (g) (f+g)(3)=76(f+g)(3) = 76
  • (h) (fg)(3)=581\left(\frac{f}{g}\right)(3) = \frac{-5}{81}

Would you like further explanations on any part?

Related questions:

  1. What is the composition of two functions, such as (fg)(x)(f \circ g)(x)?
  2. How do you find the inverse of a function like f(x)=x8f(x) = x - 8?
  3. What are the critical points of f(x)f(x) and g(x)g(x)?
  4. How do you graph polynomial functions like f(x)f(x) and g(x)g(x)?
  5. How would you find asymptotes for rational functions like f(x)g(x)\frac{f(x)}{g(x)}?

Tip:

For rational functions, always check for points where the denominator equals zero to determine the domain.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Polynomials
Rational Functions

Formulas

f(x) + g(x) = 9x^2 + x - 8
f(x) - g(x) = -9x^2 + x - 8
f(x) * g(x) = 9x^3 - 72x^2
f(x) / g(x) = (x - 8) / (9x^2)

Theorems

Polynomial Functions Domain
Quotient of Functions Domain Exclusion

Suitable Grade Level

Grades 9-12