Math Problem Statement

Calculate 𝑀6M6 for 𝑓(π‘₯)=7π‘₯⎯⎯⎯⎯√f(x)=7x over [3,6].[3,6].

(Use decimal notation. Give your answer to two decimal places.) 𝑀6β‰ˆ

Solution

To calculate M6M_6, the approximation of the integral of f(x)=7xf(x) = \sqrt{7x} over [3,6][3,6] using the midpoint rule with n=6n = 6, follow these steps:

Step 1: Determine the width of each subinterval

Ξ”x=bβˆ’an=6βˆ’36=0.5\Delta x = \frac{b-a}{n} = \frac{6-3}{6} = 0.5

Step 2: Identify the midpoints of the subintervals

The subintervals are: [ [3, 3.5], [3.5, 4], [4, 4.5], [4.5, 5], [5, 5.5], [5.5, 6] ] The midpoints are: x1=3.25, x2=3.75, x3=4.25, x4=4.75, x5=5.25, x6=5.75x_1 = 3.25, \, x_2 = 3.75, \, x_3 = 4.25, \, x_4 = 4.75, \, x_5 = 5.25, \, x_6 = 5.75

Step 3: Evaluate f(x)=7xf(x) = \sqrt{7x} at each midpoint

f(x1)=7β‹…3.25=22.75β‰ˆ4.77f(x_1) = \sqrt{7 \cdot 3.25} = \sqrt{22.75} \approx 4.77 f(x2)=7β‹…3.75=26.25β‰ˆ5.12f(x_2) = \sqrt{7 \cdot 3.75} = \sqrt{26.25} \approx 5.12 f(x3)=7β‹…4.25=29.75β‰ˆ5.45f(x_3) = \sqrt{7 \cdot 4.25} = \sqrt{29.75} \approx 5.45 f(x4)=7β‹…4.75=33.25β‰ˆ5.77f(x_4) = \sqrt{7 \cdot 4.75} = \sqrt{33.25} \approx 5.77 f(x5)=7β‹…5.25=36.75β‰ˆ6.06f(x_5) = \sqrt{7 \cdot 5.25} = \sqrt{36.75} \approx 6.06 f(x6)=7β‹…5.75=40.25β‰ˆ6.35f(x_6) = \sqrt{7 \cdot 5.75} = \sqrt{40.25} \approx 6.35

Step 4: Apply the midpoint rule

The formula for the midpoint rule is: M6=Ξ”xβˆ‘i=16f(xi)M_6 = \Delta x \sum_{i=1}^6 f(x_i) Substitute the values: M6=0.5β‹…(4.77+5.12+5.45+5.77+6.06+6.35)M_6 = 0.5 \cdot (4.77 + 5.12 + 5.45 + 5.77 + 6.06 + 6.35) M6=0.5β‹…33.52=16.76M_6 = 0.5 \cdot 33.52 = 16.76

Final Answer:

M6β‰ˆ16.76M_6 \approx 16.76

Let me know if you have any questions or need further details!


Follow-up Questions:

  1. How is the midpoint rule different from other numerical integration methods like the trapezoidal rule?
  2. Why is it important to use decimal notation in approximations?
  3. Can M6M_6 be calculated using a smaller or larger nn? How does nn affect accuracy?
  4. How would the integral be solved analytically for ∫367x dx\int_3^6 \sqrt{7x} \, dx?
  5. What is the geometric interpretation of the midpoint rule?

Tip: Always double-check intermediate calculations when using numerical methods to avoid compounding errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Integration
Midpoint Rule
Square Roots

Formulas

Midpoint Rule: M_n = Ξ”x * Ξ£f(x_i)
Width of Subinterval: Ξ”x = (b-a)/n
Function Evaluation: f(x) = sqrt(7x)

Theorems

Midpoint Rule for Numerical Integration

Suitable Grade Level

Grades 11-12