Math Problem Statement

can you find the normal vector to vectors ab(-3,-1,7) and ac(-3,0,3)

Solution

To find the normal vector to two given vectors, you can use the cross product. Let's denote the vectors as follows:

  • Vector AB: AB=(3,1,7)\vec{AB} = (-3, -1, 7)
  • Vector AC: AC=(3,0,3)\vec{AC} = (-3, 0, 3)

The cross product of these two vectors, AB×AC\vec{AB} \times \vec{AC}, will give a vector that is perpendicular to both.

The cross product formula for two vectors u=(u1,u2,u3)\vec{u} = (u_1, u_2, u_3) and v=(v1,v2,v3)\vec{v} = (v_1, v_2, v_3) is:

u×v=ijku1u2u3v1v2v3\vec{u} \times \vec{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}

Let's compute it:

AB×AC=ijk317303\vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & -1 & 7 \\ -3 & 0 & 3 \end{vmatrix}

I'll calculate it step-by-step.

First, expanding the determinant:

AB×AC=i1703j3733+k3130\vec{AB} \times \vec{AC} = \mathbf{i} \begin{vmatrix} -1 & 7 \\ 0 & 3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -3 & 7 \\ -3 & 3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -3 & -1 \\ -3 & 0 \end{vmatrix}

Let's solve these determinants:

  1. For i\mathbf{i}: 1703=(1)(3)(7)(0)=3\begin{vmatrix} -1 & 7 \\ 0 & 3 \end{vmatrix} = (-1)(3) - (7)(0) = -3
  2. For j\mathbf{j}: 3733=(3)(3)(7)(3)=9+21=12\begin{vmatrix} -3 & 7 \\ -3 & 3 \end{vmatrix} = (-3)(3) - (7)(-3) = -9 + 21 = 12
  3. For k\mathbf{k}: 3130=(3)(0)(1)(3)=03=3\begin{vmatrix} -3 & -1 \\ -3 & 0 \end{vmatrix} = (-3)(0) - (-1)(-3) = 0 - 3 = -3

Thus, the cross product is:

AB×AC=3i12j3k\vec{AB} \times \vec{AC} = -3\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}

So the normal vector to the given vectors is:

n=(3,12,3)\vec{n} = (-3, -12, -3)

Would you like more details or have any questions?

Here are five related questions:

  1. How do you find the magnitude of a normal vector?
  2. What is the geometric meaning of a cross product?
  3. How do you normalize a vector?
  4. Can you find the area of the parallelogram formed by two vectors?
  5. What are the properties of a cross product?

Tip: The direction of the cross product depends on the right-hand rule, which determines the orientation of the resulting vector.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Cross Product
Normal Vector

Formulas

Cross product formula: u × v = |i j k|
Determinants for each vector component

Theorems

Right-hand rule for cross product

Suitable Grade Level

Grades 10-12