Math Problem Statement

Write step-by-step solution for this problem:

Given the set of vectors A=Span{(2,0,1),(1,3,4)} and a vector b=(5,6,7), find the point in the span of A that is nearest to b.

Solution

To find the point in the span of A=Span{(2,0,1),(1,3,4)}A = \text{Span}\{(2,0,1),(1,3,4)\} that is nearest to b=(5,6,7)\mathbf{b} = (5, 6, 7), we can use the concept of projection. Here's a step-by-step solution:

Step 1: Set Up the Problem

We need to find the vector p\mathbf{p} in the span of AA such that p\mathbf{p} is the closest point to b\mathbf{b}.

Let the vectors in the span of AA be v1=(2,0,1)\mathbf{v}_1 = (2, 0, 1) and v2=(1,3,4)\mathbf{v}_2 = (1, 3, 4). Any vector in the span of AA can be written as: p=c1v1+c2v2=c1(2,0,1)+c2(1,3,4)\mathbf{p} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = c_1 (2, 0, 1) + c_2 (1, 3, 4) p=(2c1+c2,3c2,c1+4c2)\mathbf{p} = (2c_1 + c_2, 3c_2, c_1 + 4c_2)

Step 2: Formulate the Problem as a System of Equations

We want to minimize the distance between p\mathbf{p} and b\mathbf{b}. The distance (squared) between p\mathbf{p} and b\mathbf{b} is: pb2=(2c1+c25)2+(3c26)2+(c1+4c27)2\|\mathbf{p} - \mathbf{b}\|^2 = (2c_1 + c_2 - 5)^2 + (3c_2 - 6)^2 + (c_1 + 4c_2 - 7)^2

Step 3: Solve for c1c_1 and c2c_2

To find the minimum, we take the partial derivatives of pb2\|\mathbf{p} - \mathbf{b}\|^2 with respect to c1c_1 and c2c_2, and set them to zero.

c1[(2c1+c25)2+(3c26)2+(c1+4c27)2]=0\frac{\partial}{\partial c_1} \left[ (2c_1 + c_2 - 5)^2 + (3c_2 - 6)^2 + (c_1 + 4c_2 - 7)^2 \right] = 0 c2[(2c1+c25)2+(3c26)2+(c1+4c27)2]=0\frac{\partial}{\partial c_2} \left[ (2c_1 + c_2 - 5)^2 + (3c_2 - 6)^2 + (c_1 + 4c_2 - 7)^2 \right] = 0

This results in the following system of linear equations:

  1. 2(2c1+c25)2+2(c1+4c27)1=02(2c_1 + c_2 - 5) \cdot 2 + 2(c_1 + 4c_2 - 7) \cdot 1 = 0
  2. 2(2c1+c25)1+2(3c26)3+2(c1+4c27)4=02(2c_1 + c_2 - 5) \cdot 1 + 2(3c_2 - 6) \cdot 3 + 2(c_1 + 4c_2 - 7) \cdot 4 = 0

Step 4: Simplify the Equations

Simplify the equations:

  1. 8c1+4c220+2c1+8c214=08c_1 + 4c_2 - 20 + 2c_1 + 8c_2 - 14 = 0 10c1+12c2=3410c_1 + 12c_2 = 34 5c1+6c2=17(Equation 1)5c_1 + 6c_2 = 17 \quad \text{(Equation 1)}

  2. 4c1+2c210+18c236+4c1+16c228=04c_1 + 2c_2 - 10 + 18c_2 - 36 + 4c_1 + 16c_2 - 28 = 0 8c1+36c2=748c_1 + 36c_2 = 74 4c1+18c2=37(Equation 2)4c_1 + 18c_2 = 37 \quad \text{(Equation 2)}

Step 5: Solve the System of Equations

Solve the linear system: 5c1+6c2=175c_1 + 6c_2 = 17 4c1+18c2=374c_1 + 18c_2 = 37

From Equation 1: [ c_1 = \frac{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector spaces
Linear algebra
Projection

Formulas

Distance formula
Partial derivative

Theorems

-

Suitable Grade Level

Undergraduate