Math Problem Statement

\left(5\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-3\sqrt{3}\right) give me more questions like this to solve

Solution

Let's first expand and simplify the given expression to make sure we're on the same page.

Given Expression:

(52+3)(2233)\left(5\sqrt{2} + \sqrt{3}\right)\left(2\sqrt{2} - 3\sqrt{3}\right)

Expansion:

=(52)(22)+(52)(33)+(3)(22)+(3)(33)= (5\sqrt{2})(2\sqrt{2}) + (5\sqrt{2})(-3\sqrt{3}) + (\sqrt{3})(2\sqrt{2}) + (\sqrt{3})(-3\sqrt{3})

Simplification:

  1. (52)(22)=10×2=20(5\sqrt{2})(2\sqrt{2}) = 10 \times 2 = 20
  2. (52)(33)=156(5\sqrt{2})(-3\sqrt{3}) = -15\sqrt{6}
  3. (3)(22)=26(\sqrt{3})(2\sqrt{2}) = 2\sqrt{6}
  4. (3)(33)=9(\sqrt{3})(-3\sqrt{3}) = -9

Combine Like Terms:

=20156+269= 20 - 15\sqrt{6} + 2\sqrt{6} - 9 =(209)+(156+26)= (20 - 9) + (-15\sqrt{6} + 2\sqrt{6}) =11136= 11 - 13\sqrt{6}


Now that we have the simplified result, here are 5 similar problems for you to solve:

  1. (35+27)(457)\left(3\sqrt{5} + 2\sqrt{7}\right)\left(4\sqrt{5} - \sqrt{7}\right)
  2. (2352)(33+42)\left(2\sqrt{3} - 5\sqrt{2}\right)\left(3\sqrt{3} + 4\sqrt{2}\right)
  3. (6+22)(632)\left(\sqrt{6} + 2\sqrt{2}\right)\left(\sqrt{6} - 3\sqrt{2}\right)
  4. (42+5)(225)\left(4\sqrt{2} + \sqrt{5}\right)\left(2\sqrt{2} - \sqrt{5}\right)
  5. (732)(33+22)\left(7\sqrt{3} - \sqrt{2}\right)\left(3\sqrt{3} + 2\sqrt{2}\right)

Tip: When multiplying binomials with square roots, treat a\sqrt{a} like a variable during expansion, but remember to simplify square roots after multiplying (e.g., 2×2=2\sqrt{2} \times \sqrt{2} = 2).

Let me know if you need help solving any of these or want further explanations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Multiplication of Binomials
Radical Expressions

Formulas

(a + b)(c + d) = ac + ad + bc + bd
√a * √a = a

Theorems

Distributive Property of Multiplication

Suitable Grade Level

Grades 8-10