Math Problem Statement

(32 ^3 mod 13 ) ^2 mod 11 explain

Solution

Let's solve the expression step by step:

Expression:

(323mod13)2mod11(32^3 \mod 13)^2 \mod 11

Step 1: Simplify 323mod1332^3 \mod 13

  1. Find 32mod1332 \mod 13: 32÷13=2 remainder 632 \div 13 = 2 \text{ remainder } 6 Thus, 326mod1332 \equiv 6 \mod 13.

  2. Calculate 63mod136^3 \mod 13: 63=6×6×6=2166^3 = 6 \times 6 \times 6 = 216 Now find 216mod13216 \mod 13: 216÷13=16 remainder 8216 \div 13 = 16 \text{ remainder } 8 Therefore, 638mod136^3 \equiv 8 \mod 13.

Step 2: Square the result and find modulo 11

Now we need to calculate: 82mod118^2 \mod 11

  1. Calculate 828^2: 82=648^2 = 64

  2. Find 64mod1164 \mod 11: 64÷11=5 remainder 964 \div 11 = 5 \text{ remainder } 9 Thus, 649mod1164 \equiv 9 \mod 11.

Final Result:

(323mod13)2mod11=9(32^3 \mod 13)^2 \mod 11 = 9

So, the final answer is 9.


Do you want more details, or have any questions? Here are five related problems to try:

  1. Calculate (273mod17)2mod13(27^3 \mod 17)^2 \mod 13.
  2. Find (154mod19)3mod7(15^4 \mod 19)^3 \mod 7.
  3. Simplify (452mod23)2mod5(45^2 \mod 23)^2 \mod 5.
  4. Evaluate (85mod14)3mod9(8^5 \mod 14)^3 \mod 9.
  5. Solve (1003mod31)2mod16(100^3 \mod 31)^2 \mod 16.

Tip: When dealing with large exponents in modular arithmetic, simplify the base first before raising it to the power.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Modular Arithmetic
Exponentiation
Number Theory

Formulas

a^b mod m = (a mod m)^b mod m
(a × b) mod m = [(a mod m) × (b mod m)] mod m

Theorems

Modular Exponentiation Theorem

Suitable Grade Level

Grades 9-12