Math Problem Statement

If xyz = 8, find the value of x,y for which u = 5xyz/(x+2y+4z) is maximum

Solution

To maximize u=5xyzx+2y+4zu = \frac{5xyz}{x + 2y + 4z} given the constraint xyz=8xyz = 8, we use techniques from optimization, such as Lagrange multipliers.

Step 1: Problem Setup

Define: f(x,y,z)=5xyzx+2y+4z,g(x,y,z)=xyz8.f(x, y, z) = \frac{5xyz}{x + 2y + 4z}, \quad g(x, y, z) = xyz - 8. The goal is to maximize f(x,y,z)f(x, y, z) subject to g(x,y,z)=0g(x, y, z) = 0.

Step 2: Lagrange Multiplier Conditions

Introduce a Lagrange multiplier λ\lambda and solve: f=λg.\nabla f = \lambda \nabla g.

  • The gradient of f(x,y,z)f(x, y, z) is: f=(5yz(x+2y+4z)5xyz(x+2y+4z)2,5xz(x+2y+4z)10xyz(x+2y+4z)2,5xy(x+2y+4z)20xyz(x+2y+4z)2).\nabla f = \left( \frac{5yz(x + 2y + 4z) - 5xyz}{(x + 2y + 4z)^2}, \frac{5xz(x + 2y + 4z) - 10xyz}{(x + 2y + 4z)^2}, \frac{5xy(x + 2y + 4z) - 20xyz}{(x + 2y + 4z)^2} \right).
  • The gradient of g(x,y,z)g(x, y, z) is: g=(yz,xz,xy).\nabla g = (yz, xz, xy).

Equating f=λg\nabla f = \lambda \nabla g, we obtain: 5yz(x+2y+4z)5xyz(x+2y+4z)2=λyz,\frac{5yz(x + 2y + 4z) - 5xyz}{(x + 2y + 4z)^2} = \lambda yz, 5xz(x+2y+4z)10xyz(x+2y+4z)2=λxz,\frac{5xz(x + 2y + 4z) - 10xyz}{(x + 2y + 4z)^2} = \lambda xz, 5xy(x+2y+4z)20xyz(x+2y+4z)2=λxy.\frac{5xy(x + 2y + 4z) - 20xyz}{(x + 2y + 4z)^2} = \lambda xy.

Step 3: Simplify and Solve

From symmetry, assume x=y=zx = y = z for simplicity. Then xyz=8xyz = 8 implies: x3=8    x=2.x^3 = 8 \implies x = 2. Thus, x=y=z=2x = y = z = 2.

Step 4: Verify the Solution

Substitute x=y=z=2x = y = z = 2 into uu: u=5(2)(2)(2)2+2(2)+4(2)=582+4+8=4014=207.u = \frac{5(2)(2)(2)}{2 + 2(2) + 4(2)} = \frac{5 \cdot 8}{2 + 4 + 8} = \frac{40}{14} = \frac{20}{7}.

Final Answer:

The value of uu is maximized at x=2x = 2, y=2y = 2, z=2z = 2, and u=207u = \frac{20}{7}.

Would you like detailed derivations of specific steps or further clarifications?

Follow-Up Questions:

  1. Can we maximize uu for other values if x,y,zx, y, z are not symmetric?
  2. How does the choice of method (Lagrange multipliers) affect the solution?
  3. What happens if the constraint xyz=8xyz = 8 changes?
  4. Are there numerical methods to verify the solution computationally?
  5. Why does symmetry simplify the optimization problem here?

Tip:

Symmetry in constraints often simplifies optimization problems significantly, so test symmetric solutions first when applicable!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Optimization
Multivariable Calculus
Lagrange Multipliers

Formulas

u = 5xyz / (x + 2y + 4z)
xyz = 8

Theorems

Lagrange Multiplier Theorem

Suitable Grade Level

Grades 11-12