Math Problem Statement

У трикутнику з довжиною основи b, двома гострими кутами при основі і висотою h вписано прямокутник так, що дві його вершини розташовані на основі трикутника, а дві інші його вершини лежать на бічних сторонах. Знайти розміри прямокутника, який має найбільшу площу.

Solution

The problem involves finding the dimensions of a rectangle with the largest possible area inscribed in a triangle. Here's the breakdown and solution:

Problem Setup:

  1. A triangle with base bb and height hh is given.
  2. A rectangle is inscribed in the triangle such that:
    • Two of the rectangle's vertices lie on the base of the triangle.
    • The other two vertices lie on the two sides of the triangle.
  3. We need to find the dimensions of the rectangle that maximizes its area.

Solution:

  1. Relationship Between Variables:

    • Place the triangle in the coordinate system with its base along the xx-axis and the vertex opposite the base at (b/2,h)(b/2, h).
    • Assume the rectangle has a width ww and height yy where the upper vertices of the rectangle lie on the sides of the triangle.
  2. Equations for the Triangle's Sides:

    • The equations of the sides of the triangle are:
      • Left side: y=2hbxy = \frac{2h}{b} x
      • Right side: y=2hbx+2hy = -\frac{2h}{b} x + 2h
  3. Maximizing the Rectangle Area:

    • Let the base of the rectangle be 2x2x, with the rectangle's vertices at (x,y)(x, y) and (x,y)(-x, y).
    • The rectangle's area is A=2xyA = 2x \cdot y.
    • Substitute yy from the line equation y=2hbxy = \frac{2h}{b} x: A=2x2hbx=4hbx2A = 2x \cdot \frac{2h}{b} x = \frac{4h}{b} x^2
  4. Optimization:

    • To maximize AA, take the derivative with respect to xx: dAdx=8hbx\frac{dA}{dx} = \frac{8h}{b} x
    • Set dAdx=0\frac{dA}{dx} = 0 to find critical points: x=0or maximum at x=b/4x = 0 \quad \text{or maximum at } x = b/4
  5. Dimensions of the Maximum Rectangle:

    • If x=b/4x = b/4, substitute back into the equation for yy: y=2hbb4=h2y = \frac{2h}{b} \cdot \frac{b}{4} = \frac{h}{2}
    • The rectangle's dimensions are:
      • Width: 2x=b22x = \frac{b}{2}
      • Height: y=h2y = \frac{h}{2}
  6. Maximum Area: Amax=4hb(b4)2=bh4A_{\text{max}} = \frac{4h}{b} \left( \frac{b}{4} \right)^2 = \frac{bh}{4}


Final Answer:

The dimensions of the rectangle with the largest area are:

  • Width: b2\frac{b}{2}
  • Height: h2\frac{h}{2}

Would you like further clarification or details on any specific part of the process? Here are five related questions to consider:

  1. How is the optimization process carried out using derivatives?
  2. What other methods can be used to find maximum areas in similar geometric problems?
  3. Could a different placement of the rectangle lead to a larger area?
  4. How would the solution change if the triangle were scalene?
  5. Can the same principles be applied to 3D geometry, such as maximizing the volume of a rectangular prism inside a pyramid?

Tip: When optimizing areas or volumes in geometry, always check the constraints carefully, as they dictate the limits of your solution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Optimization
Geometry
Algebra

Formulas

Area of a rectangle: A = width × height
Equations of lines: y = mx + c
Derivative for optimization: dA/dx = 0

Theorems

Basic properties of similar triangles
Optimization using calculus

Suitable Grade Level

Grade 10-12