Math Problem Statement
Use the method of this section to solve the linear programming problem.
Maximize
P = x − 7y + z
subject to
2x + 3y + 2z ≤ 8
x + 2y − 3z ≥ 4
x ≥ 0, y ≥ 0, z ≥ 0
The maximum is P =
at
(x, y, z) =
.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Programming
Optimization
Inequalities
Simplex Method
Formulas
Objective function: P = x - 7y + z
Constraints: 2x + 3y + 2z ≤ 8, x + 2y - 3z ≥ 4, x ≥ 0, y ≥ 0, z ≥ 0
Theorems
Simplex Method
Linear Inequality Theorem
Suitable Grade Level
Grades 11-12
Related Recommendation
Maximize Linear Programming Problem using Simplex Method
Maximize Objective Function in Linear Programming Problem with Constraints
Maximize and Minimize Linear Programming Problem: z = 2x + 3y
Maximize Linear Programming Problem Using Nonstandard Simplex Method
Linear Programming Problem (LPP) with Simplex Method: Maximize Z = 5x1 + 4x2