Math Problem Statement

\displaylinesLa˚t(x)=3x+1,g(x)=ln(x2)a)Besta¨mmaximaldefinitionsma¨ndfo¨rg(x).b)Besta¨mgf(x)ochf1(x).{\displaylines Låt\,(x)=3x+1,\,\,\,g(x)=ln(x2)\\ a)Bestäm\,maximaldefinitionsmänd\,för\,\,g(x).\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b)Bestäm\,\,g\,◦f(x)\,\,ochf^{-1}(x).\\ }

Solution

Let's go through the given problem step by step:

a) Maximal Definitionsmängd for g(x)=ln(x2)g(x) = \ln(x^2)

The function g(x)=ln(x2)g(x) = \ln(x^2) is a logarithmic function, and for a logarithmic function to be defined, its argument must be strictly greater than zero:

x2>0x^2 > 0

Since x2>0x^2 > 0 for all x0x \neq 0, the domain of g(x)g(x) is:

x(,0)(0,)x \in (-\infty, 0) \cup (0, \infty)

In other words, the maximal domain (or definitionsmängd) of g(x)g(x) is all real numbers except x=0x = 0.

Maximal Definitionsmängd: xR,x0x \in \mathbb{R}, x \neq 0


b) gf(x)g \circ f(x) and f1(x)f^{-1}(x)

1. Compute gf(x)g \circ f(x)

The composition of functions gf(x)g \circ f(x) means applying f(x)f(x) first, then applying g(x)g(x) to the result. We are given:

f(x)=3x+1andg(x)=ln(x2)f(x) = 3x + 1 \quad \text{and} \quad g(x) = \ln(x^2)

Thus, gf(x)=g(f(x))g \circ f(x) = g(f(x)):

g(f(x))=ln((f(x))2)=ln((3x+1)2)g(f(x)) = \ln((f(x))^2) = \ln((3x + 1)^2)

So:

gf(x)=ln((3x+1)2)g \circ f(x) = \ln((3x + 1)^2)


2. Compute f1(x)f^{-1}(x) (the inverse of f(x)f(x))

To find the inverse of f(x)=3x+1f(x) = 3x + 1, we solve for xx in terms of yy where y=f(x)y = f(x):

y=3x+1y = 3x + 1

Solve for xx:

y1=3xy - 1 = 3x

x=y13x = \frac{y - 1}{3}

Thus, the inverse function is:

f1(x)=x13f^{-1}(x) = \frac{x - 1}{3}


Final Results:

a) The maximal definitionsmängd for g(x)g(x) is xR,x0x \in \mathbb{R}, x \neq 0.

b)

  • gf(x)=ln((3x+1)2)g \circ f(x) = \ln((3x + 1)^2)
  • f1(x)=x13f^{-1}(x) = \frac{x - 1}{3}

Would you like more details on any of these steps? Here are some related questions to deepen understanding:

  1. What is the definition of the composition of functions?
  2. How do you determine the domain of a composite function like gf(x)g \circ f(x)?
  3. Why does x2x^2 remain positive for all x0x \neq 0?
  4. How would you graph f(x)=3x+1f(x) = 3x + 1 and its inverse f1(x)f^{-1}(x)?
  5. What are the properties of logarithmic functions that help solve g(x)=ln(x2)g(x) = \ln(x^2)?

Tip: When finding the domain of a logarithmic function, always ensure the argument inside the logarithm is positive.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Logarithmic Functions
Function Composition
Inverse Functions

Formulas

g(x) = ln(x^2)
f(x) = 3x + 1
g∘f(x) = ln((3x+1)^2)
f^{-1}(x) = (x - 1) / 3

Theorems

Logarithmic properties
Domain of a function
Inverse function theorem

Suitable Grade Level

Grades 10-12