Math Problem Statement

find f[g(x)] and g[f(x)].

f(x) = ln(x^2+4); g(x)=2x-1

Solution

Let's find both f(g(x))f(g(x)) and g(f(x))g(f(x)) given the functions:

  • f(x)=ln(x2+4)f(x) = \ln(x^2 + 4)
  • g(x)=2x1g(x) = 2x - 1

Step 1: Find f(g(x))f(g(x))

To find f(g(x))f(g(x)), substitute g(x)=2x1g(x) = 2x - 1 into f(x)f(x):

f(g(x))=f(2x1)=ln((2x1)2+4)f(g(x)) = f(2x - 1) = \ln((2x - 1)^2 + 4)

Now, simplify the expression inside the logarithm:

f(g(x))=ln((2x1)2+4)f(g(x)) = \ln((2x - 1)^2 + 4)

This is the expression for f(g(x))f(g(x)).

Step 2: Find g(f(x))g(f(x))

To find g(f(x))g(f(x)), substitute f(x)=ln(x2+4)f(x) = \ln(x^2 + 4) into g(x)g(x):

g(f(x))=g(ln(x2+4))=2ln(x2+4)1g(f(x)) = g(\ln(x^2 + 4)) = 2\ln(x^2 + 4) - 1

So,

g(f(x))=2ln(x2+4)1g(f(x)) = 2\ln(x^2 + 4) - 1

This is the expression for g(f(x))g(f(x)).

Summary:

  • f(g(x))=ln((2x1)2+4)f(g(x)) = \ln((2x - 1)^2 + 4)
  • g(f(x))=2ln(x2+4)1g(f(x)) = 2\ln(x^2 + 4) - 1

Would you like a more detailed explanation of the steps or any further questions?

Related Questions:

  1. What happens to f(g(x))f(g(x)) if g(x)=x2g(x) = x^2 instead?
  2. How does the derivative of f(g(x))f(g(x)) differ from that of g(f(x))g(f(x))?
  3. How would you find the inverse of f(x)f(x)?
  4. What are the domain restrictions for both composite functions?
  5. How can you expand f(g(x))f(g(x)) further if the logarithm is required to be in simpler terms?

Tip: Always verify the domain of composite functions to ensure both inner and outer functions are defined.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Composite Functions
Logarithmic Functions
Algebra

Formulas

f(g(x)) = ln((2x-1)^2 + 4)
g(f(x)) = 2ln(x^2 + 4) - 1

Theorems

Composition of Functions
Logarithmic Properties

Suitable Grade Level

Grades 10-12