Math Problem Statement

For the given matrix, find the following.

A =

2

2

2

8

2

2

3

  1. the matrix is 2x4

(a) Find the reduced row echelon form of A.

(b) Find the rank of A.

(c) Find a basis of the column space C(A) expressed in terms of columns of A.

(d) Find a basis of the null space N(A).

Solution

Given the matrix AA, we will address each part step by step:

A=[222822310]A = \begin{bmatrix} 2 & 2 & 2 & 8 \\ 2 & 2 & 3 & 10 \end{bmatrix}

(a) Find the Reduced Row Echelon Form (RREF) of AA:

To find the RREF, we apply row operations to transform the matrix into its simplest form, where:

  1. The leading entry in each row is 1.
  2. Each leading 1 is the only nonzero entry in its column.
  3. The leading 1 of the lower rows is further to the right than that of the row above.

Applying elementary row operations:

Step 1: Subtract Row 1 from Row 2\text{Step 1: Subtract Row 1 from Row 2} [22280012]\begin{bmatrix} 2 & 2 & 2 & 8 \\ 0 & 0 & 1 & 2 \end{bmatrix}

Step 2: Scale Row 1 by dividing it by 2\text{Step 2: Scale Row 1 by dividing it by 2} [11140012]\begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}

Step 3: Subtract Row 2 from Row 1\text{Step 3: Subtract Row 2 from Row 1} [11020012]\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}

So, the RREF of AA is:

[11020012]\boxed{ \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} }


(b) Find the Rank of AA:

The rank of a matrix is the number of leading 1's in its RREF.

From the RREF [11020012]\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}, we observe that there are 2 leading 1's, so the rank of AA is:

2\boxed{ 2 }


(c) Find a Basis of the Column Space C(A)C(A) expressed in terms of the columns of AA:

The column space C(A)C(A) is spanned by the linearly independent columns of the original matrix AA. From the RREF, the pivot columns (the columns corresponding to leading 1's) are the first and third columns.

Thus, the basis for the column space consists of the first and third columns of AA:

Basis for C(A)={[22],[23]}\text{Basis for } C(A) = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}

So, the basis of the column space is:

{[22],[23]}\boxed{ \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\} }


(d) Find a Basis of the Null Space N(A)N(A):

To find the null space, we solve Ax=0A \mathbf{x} = 0. Using the RREF of AA, we get the following system of equations:

x_1 + x_2 + 2x_4 &= 0 \\ x_3 + 2x_4 &= 0 \end{aligned}$$ Express $$x_1$$ and $$x_3$$ in terms of free variables $$x_2$$ and $$x_4$$: $$x_1 = -x_2 - 2x_4, \quad x_3 = -2x_4$$ Thus, the solution vector $$\mathbf{x}$$ is: $$\mathbf{x} = \begin{bmatrix} -x_2 - 2x_4 \\ x_2 \\ -2x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$ The **basis of the null space** is: $$\boxed{ \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\} }$$ --- Would you like further details or have any questions about these calculations? ### Related Questions: 1. How would you compute the RREF for a larger matrix? 2. What is the geometric interpretation of the column space? 3. How do you find the rank of a matrix using determinant properties? 4. Can you explain the relationship between the rank and nullity of a matrix? 5. What would the RREF look like for a matrix with dependent rows? ### Tip: The rank of a matrix is always less than or equal to the smaller dimension of the matrix (min(rows, columns)).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Theory
RREF
Column Space
Null Space
Rank

Formulas

Row Reduction for RREF
Rank: Number of leading 1's in RREF
Column Space: Pivot columns of original matrix
Null Space: Solving Ax=0

Theorems

Rank-Nullity Theorem

Suitable Grade Level

Undergraduate