Math Problem Statement

Echelonnee cette matrice Et reduit

Echelonnez cette matrice et réduisez-la

Solution

To transform the matrix into its echelon form and reduced row echelon form, I'll first write down the given matrix AA and work step-by-step.

The matrix is:

1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$ ### Step 1: Transform to Row Echelon Form 1. Keep the first row as is since the pivot at (1,1) is already 1. 2. Use row operations to eliminate entries below the pivot: - $$R_2 \gets R_2 - R_1$$ - $$R_3 \gets R_3$$ $$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 1 &-1 & 2 \\ \end { theLet me redo this.The given matrix $$A$$ is: \[ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$ ### Step 1: Row Echelon Form (REF) 1. Keep $$R_1$$ as is: $$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$ 2. Eliminate $$R_{2,1}$$: $$R_2 \to R_2 - R_1$$: $$R_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix}$$ New matrix: $$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$ 3. Eliminate $$R_{3,2}$$ using \(R_1,/ matrix

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Row Echelon Form
Reduced Row Echelon Form

Formulas

Row reduction rules: R_i → R_i + cR_j
Matrix transformation operations

Theorems

Gaussian Elimination
Elementary Row Operations

Suitable Grade Level

Undergraduate Level (Linear Algebra Course)