Math Problem Statement
Solution
To solve this, we aim to:
- Determine the matrix representation of the projection for the subspace .
- Find the eigenvalues and eigenvectors of this matrix , and represent in diagonalized form .
Step 1: Matrix representation of
The subspace is spanned by the vectors:
\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}.$$ To project a vector $$\mathbf{v} \in \mathbb{R}^4$$ onto $$H$$, we use: $$\text{Proj}_H(\mathbf{v}) = P_H \mathbf{v},$$ where $$P_H$$ is the projection matrix given by: $$P_H = V(V^T V)^{-1}V^T,$$ and $$V$$ is the matrix whose columns are the basis vectors of $$H$$: $$V = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 0 \\ 2 & 0 \end{bmatrix}.$$ --- ### Step 2: Calculate $$P_H$$ 1. **Compute $$V^T V$$:** $$V^T V = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 6 \\ 6 & 6 \end{bmatrix}.$$ 2. **Find $$(V^T V)^{-1}$$:** $$(V^T V)^{-1} = \frac{1}{(10)(6) - (6)(6)} \begin{bmatrix} 6 & -6 \\ -6 & 10 \end{bmatrix} = \frac{1}{24} \begin{bmatrix} 6 & -6 \\ -6 & 10 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{5}{12} \end{bmatrix}.$$ 3. **Compute $$P_H = V(V^T V)^{-1}V^T$$:** Substitute $$V$$, $$(V^T V)^{-1}$$, and $$V^T$$ to compute $$P_H$$. After matrix multiplication: $$P_H = \begin{bmatrix} \frac{13}{24} & \frac{19}{24} & \frac{7}{24} & \frac{14}{24} \\ \frac{19}{24} & \frac{37}{24} & \frac{7}{24} & \frac{14}{24} \\ \frac{7}{24} & \frac{7}{24} & \frac{1}{24} & \frac{2}{24} \\ \frac{14}{24} & \frac{14}{24} & \frac{2}{24} & \frac{4}{24} \end{bmatrix}.$$ --- ### Step 3: Eigenvalues and eigenvectors of $$P_H$$ The eigenvalues of a projection matrix $$P_H$$ are always $$1$$ (for vectors in the subspace $$H$$) and $$0$$ (for vectors in the orthogonal complement $$H^\perp$$). - **Eigenvalue $$\lambda = 1$$:** Eigenvectors are those in $$H$$, spanned by $$\mathbf{v}_1$$ and $$\mathbf{v}_2$$. - **Eigenvalue $$\lambda = 0$$:** Eigenvectors are in $$H^\perp$$, which can be computed by solving $$P_H \mathbf{v} = 0$$. --- ### Step 4: Write $$A = PDP^{-1}$$ Let: $$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix},$$ where $$\mathbf{u}_1, \mathbf{u}_2$$ are eigenvectors in $$H^\perp$$, and $$D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$ --- Would you like me to explicitly compute the eigenvectors for $$H^\perp$$ or clarify any step? ### Follow-Up Questions 1. How is the projection matrix $$P_H$$ derived in general? 2. Why are the eigenvalues of $$P_H$$ restricted to $$1$$ and $$0$$? 3. Can you verify the subspace $$H$$ and $$H^\perp$$ are orthogonal? 4. How does diagonalization simplify understanding $$P_H$$? 5. What applications involve projection matrices and eigenvalue analysis? ### Tip: Projection matrices $$P_H$$ always satisfy $$P_H^2 = P_H$$ (idempotence), a key property for verification!Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Subspaces
Orthogonal Projections
Eigenvalues and Eigenvectors
Matrix Diagonalization
Formulas
Projection Matrix: P_H = V(V^T V)^(-1)V^T
Diagonalization: A = PDP^(-1)
Eigenvalue property of projections: λ = 1 (in subspace), λ = 0 (in orthogonal complement)
Theorems
Orthogonal Projection Theorem
Eigenvalue Theorem for Projections
Properties of Projection Matrices
Suitable Grade Level
Undergraduate (Linear Algebra Course)
Related Recommendation
Orthogonal Projection Matrix onto a Subspace in R2
Matrix of Projection Operator for Eigenvalue λ = 2 in R4
Diagonalization of a 2x2 Matrix with Given Eigenvalues and Eigenvectors
Understanding Projection Matrices and Eigenvectors with A^2 = A
Projection Matrix for Vector (1, 1, 1) onto Line Spanned by (1, 2, 2)