Math Problem Statement

Let H be the subspace spanned by vectors [1, 2, 1, 2] and [1, 2, 0, 0]. Let Proj_H: R^4 -> R^4 be the linear transformation that orthogonally projects a vector v onto H. Calculate the matrix A of Proj_H, find its eigenvalues and eigenvectors, and write A in diagonalized form A = PDP^(-1).

Solution

To solve this, we aim to:

  1. Determine the matrix representation of the projection ProjH\text{Proj}_H for the subspace HH.
  2. Find the eigenvalues and eigenvectors of this matrix AA, and represent AA in diagonalized form A=PDP1A = PDP^{-1}.

Step 1: Matrix representation of ProjH\text{Proj}_H

The subspace HH is spanned by the vectors:

\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}.$$ To project a vector $$\mathbf{v} \in \mathbb{R}^4$$ onto $$H$$, we use: $$\text{Proj}_H(\mathbf{v}) = P_H \mathbf{v},$$ where $$P_H$$ is the projection matrix given by: $$P_H = V(V^T V)^{-1}V^T,$$ and $$V$$ is the matrix whose columns are the basis vectors of $$H$$: $$V = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 0 \\ 2 & 0 \end{bmatrix}.$$ --- ### Step 2: Calculate $$P_H$$ 1. **Compute $$V^T V$$:** $$V^T V = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 6 \\ 6 & 6 \end{bmatrix}.$$ 2. **Find $$(V^T V)^{-1}$$:** $$(V^T V)^{-1} = \frac{1}{(10)(6) - (6)(6)} \begin{bmatrix} 6 & -6 \\ -6 & 10 \end{bmatrix} = \frac{1}{24} \begin{bmatrix} 6 & -6 \\ -6 & 10 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{5}{12} \end{bmatrix}.$$ 3. **Compute $$P_H = V(V^T V)^{-1}V^T$$:** Substitute $$V$$, $$(V^T V)^{-1}$$, and $$V^T$$ to compute $$P_H$$. After matrix multiplication: $$P_H = \begin{bmatrix} \frac{13}{24} & \frac{19}{24} & \frac{7}{24} & \frac{14}{24} \\ \frac{19}{24} & \frac{37}{24} & \frac{7}{24} & \frac{14}{24} \\ \frac{7}{24} & \frac{7}{24} & \frac{1}{24} & \frac{2}{24} \\ \frac{14}{24} & \frac{14}{24} & \frac{2}{24} & \frac{4}{24} \end{bmatrix}.$$ --- ### Step 3: Eigenvalues and eigenvectors of $$P_H$$ The eigenvalues of a projection matrix $$P_H$$ are always $$1$$ (for vectors in the subspace $$H$$) and $$0$$ (for vectors in the orthogonal complement $$H^\perp$$). - **Eigenvalue $$\lambda = 1$$:** Eigenvectors are those in $$H$$, spanned by $$\mathbf{v}_1$$ and $$\mathbf{v}_2$$. - **Eigenvalue $$\lambda = 0$$:** Eigenvectors are in $$H^\perp$$, which can be computed by solving $$P_H \mathbf{v} = 0$$. --- ### Step 4: Write $$A = PDP^{-1}$$ Let: $$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix},$$ where $$\mathbf{u}_1, \mathbf{u}_2$$ are eigenvectors in $$H^\perp$$, and $$D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$ --- Would you like me to explicitly compute the eigenvectors for $$H^\perp$$ or clarify any step? ### Follow-Up Questions 1. How is the projection matrix $$P_H$$ derived in general? 2. Why are the eigenvalues of $$P_H$$ restricted to $$1$$ and $$0$$? 3. Can you verify the subspace $$H$$ and $$H^\perp$$ are orthogonal? 4. How does diagonalization simplify understanding $$P_H$$? 5. What applications involve projection matrices and eigenvalue analysis? ### Tip: Projection matrices $$P_H$$ always satisfy $$P_H^2 = P_H$$ (idempotence), a key property for verification!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Subspaces
Orthogonal Projections
Eigenvalues and Eigenvectors
Matrix Diagonalization

Formulas

Projection Matrix: P_H = V(V^T V)^(-1)V^T
Diagonalization: A = PDP^(-1)
Eigenvalue property of projections: λ = 1 (in subspace), λ = 0 (in orthogonal complement)

Theorems

Orthogonal Projection Theorem
Eigenvalue Theorem for Projections
Properties of Projection Matrices

Suitable Grade Level

Undergraduate (Linear Algebra Course)