Math Problem Statement

If A = [[4, 7], [5, 2]] and B = [[3, -2], [4, -6]], find: (i) A - 1/2 B (ii) A^T + B (iii) A^2 If A = [[2, 4], [3, 9], [6, 5]] and B = [[7, 1], [-2, 9], [4, 3]], find: (i) A x B (ii) B x A If A = [[x^2, x], [xy, y]], what is the determinant of A, and illustrate whether A has an inverse?

Solution

Let's work through the matrix problems from your question systematically.


Part (a)

Given: A=(4752),B=(3246)A = \begin{pmatrix} 4 & 7 \\ 5 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -2 \\ 4 & -6 \end{pmatrix} We need to compute the following:

(i) A12BA - \frac{1}{2} B

First, compute 12B\frac{1}{2} B: 12B=12(3246)=(32123)\frac{1}{2} B = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ 4 & -6 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & -1 \\ 2 & -3 \end{pmatrix} Now subtract: A12B=(4752)(32123)=(4327(1)522(3))A - \frac{1}{2} B = \begin{pmatrix} 4 & 7 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \frac{3}{2} & -1 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 4 - \frac{3}{2} & 7 - (-1) \\ 5 - 2 & 2 - (-3) \end{pmatrix} A12B=(52835)A - \frac{1}{2} B = \begin{pmatrix} \frac{5}{2} & 8 \\ 3 & 5 \end{pmatrix}

(ii) AT+BA^T + B

First, find the transpose of AA, denoted ATA^T: AT=(4572)A^T = \begin{pmatrix} 4 & 5 \\ 7 & 2 \end{pmatrix} Now add ATA^T to BB: AT+B=(4572)+(3246)=(73114)A^T + B = \begin{pmatrix} 4 & 5 \\ 7 & 2 \end{pmatrix} + \begin{pmatrix} 3 & -2 \\ 4 & -6 \end{pmatrix} = \begin{pmatrix} 7 & 3 \\ 11 & -4 \end{pmatrix}

(iii) A2A^2

Compute the product A×AA \times A: A2=(4752)×(4752)A^2 = \begin{pmatrix} 4 & 7 \\ 5 & 2 \end{pmatrix} \times \begin{pmatrix} 4 & 7 \\ 5 & 2 \end{pmatrix} Using matrix multiplication: A2=(44+7547+7254+2557+22)=(48423039)A^2 = \begin{pmatrix} 4 \cdot 4 + 7 \cdot 5 & 4 \cdot 7 + 7 \cdot 2 \\ 5 \cdot 4 + 2 \cdot 5 & 5 \cdot 7 + 2 \cdot 2 \end{pmatrix} = \begin{pmatrix} 48 & 42 \\ 30 & 39 \end{pmatrix}


Part (b)

Given: A=(2439),B=(712943)A = \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & 1 \\ -2 & 9 \\ 4 & 3 \end{pmatrix} We need to compute the following:

(i) A×BA \times B

Since AA is a 2×22 \times 2 matrix and BB is a 2×32 \times 3 matrix, the result will be a 2×32 \times 3 matrix: [ A \times B = \begin{pmatrix} 2 & 4 \ 3 & 9 \end{pmatrix} \times \begin{pmatrix} 7 & 1 \ -2 & 9 \ 4 & 3 \endalp

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Transpose
Matrix Multiplication
Determinant
Inverse of a Matrix

Formulas

Matrix subtraction formula
Transpose of a matrix
Matrix multiplication formula
Determinant formula for 2x2 matrices: det(A) = ad - bc
Inverse of a matrix formula (if det(A) ≠ 0)

Theorems

Properties of determinants
Inverse existence condition for matrices

Suitable Grade Level

Undergraduate level