Math Problem Statement

Calculate: 5 * [ [1, 2], [3, -4] ] - 2 * [ [5, 0], [-6, 7] ] + 5 * [ [1, 0], [0, 1] ]

Solution

Let's break down and solve the matrix expression step by step.

The given expression is:

5[1234]2[5067]+5[1001]5 \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} - 2 \begin{bmatrix} 5 & 0 \\ -6 & 7 \end{bmatrix} + 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Step 1: Multiply the scalar by each matrix

First matrix:

5[1234]=[5(1)5(2)5(3)5(4)]=[5101520]5 \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 5(1) & 5(2) \\ 5(3) & 5(-4) \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 15 & -20 \end{bmatrix}

Second matrix:

2[5067]=[2(5)2(0)2(6)2(7)]=[1001214]-2 \begin{bmatrix} 5 & 0 \\ -6 & 7 \end{bmatrix} = \begin{bmatrix} -2(5) & -2(0) \\ -2(-6) & -2(7) \end{bmatrix} = \begin{bmatrix} -10 & 0 \\ 12 & -14 \end{bmatrix}

Third matrix:

5[1001]=[5(1)5(0)5(0)5(1)]=[5005]5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5(1) & 5(0) \\ 5(0) & 5(1) \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}

Step 2: Add/Subtract the matrices

Now we need to combine the results from Step 1:

[5101520]+[5005][1001214]\begin{bmatrix} 5 & 10 \\ 15 & -20 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} -10 & 0 \\ 12 & -14 \end{bmatrix}

First, subtract the second matrix: [5101520][1001214]=[5(10)100151220(14)]=[151036]\begin{bmatrix} 5 & 10 \\ 15 & -20 \end{bmatrix} - \begin{bmatrix} -10 & 0 \\ 12 & -14 \end{bmatrix} = \begin{bmatrix} 5 - (-10) & 10 - 0 \\ 15 - 12 & -20 - (-14) \end{bmatrix} = \begin{bmatrix} 15 & 10 \\ 3 & -6 \end{bmatrix}

Then add the third matrix: [151036]+[5005]=[15+510+03+06+5]=[201031]\begin{bmatrix} 15 & 10 \\ 3 & -6 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 15 + 5 & 10 + 0 \\ 3 + 0 & -6 + 5 \end{bmatrix} = \begin{bmatrix} 20 & 10 \\ 3 & -1 \end{bmatrix}

Final Answer:

The result of the matrix operation is:

[201031]\begin{bmatrix} 20 & 10 \\ 3 & -1 \end{bmatrix}

Let me know if you'd like more details on the steps or have further questions!

Related questions:

  1. How do you perform scalar multiplication with matrices?
  2. What is the process for matrix addition and subtraction?
  3. Can matrix multiplication be performed on two non-square matrices?
  4. What are some common properties of matrix operations?
  5. How do identity matrices affect matrix operations?

Tip:

Always check matrix dimensions before performing any operations to ensure they're compatible for addition, subtraction, or multiplication.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Scalar Multiplication
Matrix Addition
Matrix Subtraction

Formulas

Scalar Multiplication: c * A = [ c * a_ij ] for each element a_ij in matrix A
Matrix Addition/Subtraction: A ± B = [ a_ij ± b_ij ]

Theorems

Properties of Matrix Addition and Scalar Multiplication

Suitable Grade Level

Grades 9-12