Math Problem Statement

Based on the matrices A, B, C, D, and E provided in the image, solve the following: 1. Result of C + D^T, 2. Result of scalar multiplication 1/3 * C, 3. Result of matrix multiplication AB.

Solution

Let's solve the questions step by step based on the provided matrices in the image.

Matrices given:

  • A=[12]A = \begin{bmatrix} 1 & 2 \end{bmatrix}
  • B=[2315]B = \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}
  • C=[6408210]C = \begin{bmatrix} 6 & 4 & 0 \\ 8 & 2 & -10 \end{bmatrix}
  • D=[351204]D = \begin{bmatrix} 3 & 5 \\ 1 & 2 \\ 0 & -4 \end{bmatrix}
  • E=[121234123]E = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}

1. Find C+DTC + D^T

Here, we need to calculate the transpose of matrix DD and then add it to matrix CC.

  • Transpose of DD, DTD^T, is: DT=[310524]D^T = \begin{bmatrix} 3 & 1 & 0 \\ 5 & 2 & -4 \end{bmatrix}

Now, add matrix CC and DTD^T: C+DT=[6408210]+[310524]C + D^T = \begin{bmatrix} 6 & 4 & 0 \\ 8 & 2 & -10 \end{bmatrix} + \begin{bmatrix} 3 & 1 & 0 \\ 5 & 2 & -4 \end{bmatrix}

This gives: C+DT=[95013414]C + D^T = \begin{bmatrix} 9 & 5 & 0 \\ 13 & 4 & -14 \end{bmatrix}

2. Find 13C\frac{1}{3} C

Multiply each element of matrix CC by 13\frac{1}{3}:

13C=13[6408210]=[24308323103]\frac{1}{3} C = \frac{1}{3} \begin{bmatrix} 6 & 4 & 0 \\ 8 & 2 & -10 \end{bmatrix} = \begin{bmatrix} 2 & \frac{4}{3} & 0 \\ \frac{8}{3} & \frac{2}{3} & -\frac{10}{3} \end{bmatrix}

3. Find A×BA \times B

Multiply matrix AA by matrix BB: A×B=[12]×[2315]A \times B = \begin{bmatrix} 1 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}

Matrix multiplication: A×B=[(1×2+2×1)(1×3+2×5)]A \times B = \begin{bmatrix} (1 \times 2 + 2 \times 1) & (1 \times -3 + 2 \times 5) \end{bmatrix}

This results in: A×B=[47]A \times B = \begin{bmatrix} 4 & 7 \end{bmatrix}

Would you like any detailed explanation on any of these steps, or do you have further questions?

Questions for further exploration:

  1. What happens if we calculate the determinant of matrix BB?
  2. Can matrix CC be multiplied by matrix EE? Why or why not?
  3. What is the inverse of matrix BB, if it exists?
  4. How would we compute D×ED \times E?
  5. Can matrix DT×CD^T \times C be calculated? If so, what is the result?

Tip:

Remember, matrix multiplication is not commutative, meaning A×BB×AA \times B \neq B \times A in most cases.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Scalar Multiplication
Matrix Transposition
Matrix Multiplication

Formulas

C + D^T
1/3 * C
A * B

Theorems

Matrix addition properties
Scalar multiplication properties
Properties of matrix multiplication

Suitable Grade Level

University Level - Linear Algebra