Math Problem Statement

Determine the following operations using the provided matrices A, B, C, D, and E: a. 3A + B b. AD + 2C c. B^T C d. (A + B)^T e. AE + B

Solution

The problem requires various matrix operations using the provided matrices AA, BB, CC, DD, and EE. Let's break down the tasks and perform the calculations:

Given matrices:

  • A=(255343)A = \begin{pmatrix} -2 & 5 & -5 \\ 3 & -4 & 3 \end{pmatrix}
  • B=(3191164)B = \begin{pmatrix} 3 & -1 & 9 \\ 11 & 6 & 4 \end{pmatrix}
  • C=(31042)C = \begin{pmatrix} -3 & 10 \\ 4 & -2 \end{pmatrix}
  • D=(11123410)D = \begin{pmatrix} 11 & -1 \\ -2 & 3 \\ 4 & 10 \end{pmatrix}
  • E=(92112134562)E = \begin{pmatrix} 9 & 2 & 11 \\ 2 & 13 & -4 \\ -5 & -6 & 2 \end{pmatrix}

Operations:

a. 3A+B3A + B

We'll calculate 3A3A and add BB.

b. AD+2CAD + 2C

This involves matrix multiplication ADAD and adding twice of matrix CC.

c. BTCB^T C

Transpose matrix BB, then multiply it with matrix CC.

d. (A+B)T(A + B)^T

Add matrices AA and BB, then find the transpose of the result.

e. AE+BAE + B

Multiply matrices AA and EE, then add matrix BB.

I will start calculating these operations one by one.Here are the results of the matrix operations:

a. 3A+B3A + B

3A+B=(314620613)3A + B = \begin{pmatrix} -3 & 14 & -6 \\ 20 & -6 & 13 \end{pmatrix}

b. AD+2CAD + 2C

AD+2C=(58136111)AD + 2C = \begin{pmatrix} -58 & -13 \\ 61 & 11 \end{pmatrix}

c. BTCB^T C

BTC=(35827221182)B^T C = \begin{pmatrix} 35 & 8 \\ 27 & -22 \\ -11 & 82 \end{pmatrix}

d. (A+B)T(A + B)^T

(A+B)T=(1144247)(A + B)^T = \begin{pmatrix} 1 & 14 \\ 4 & 2 \\ 4 & 7 \end{pmatrix}

e. AE+BAE + B

AE+B=(209043155859)AE + B = \begin{pmatrix} 20 & 90 & -43 \\ 15 & -58 & 59 \end{pmatrix}

Would you like further details on any of these calculations or need clarification?

Here are some related questions to deepen your understanding:

  1. How do you calculate the transpose of a matrix, and why is it important in matrix multiplication?
  2. What properties must matrices satisfy to perform matrix multiplication?
  3. How does scalar multiplication of a matrix affect its elements?
  4. Can the order of multiplication of matrices AA and BB be swapped? Why or why not?
  5. What is the difference between matrix addition and matrix multiplication?

Tip: Remember that matrix multiplication is not commutative, meaning A×BB×AA \times B \neq B \times A in general.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Addition
Matrix Multiplication
Matrix Transpose
Scalar Multiplication

Formulas

Matrix Addition: A + B = (a_ij + b_ij)
Scalar Multiplication: kA = (k * a_ij)
Matrix Multiplication: (AB)_ij = sum(A_ik * B_kj)
Transpose: A^T = (A_ij)^T

Theorems

Properties of Matrix Addition
Properties of Matrix Multiplication
Associativity of Matrices
Transpose of a Matrix

Suitable Grade Level

Grades 10-12