Math Problem Statement

giải và kết luận đáp án 2 câu

Tìm ma trận nghịch đảo A^{-1} bằng phép biến đổi sơ cấp theo hàng cho ma trận A đã cho

Solution

To solve the inverse of matrix A1A^{-1} for both matrices given in the image, we will use the Gauss-Jordan elimination method, which involves transforming the augmented matrix [AI][A|I] into [IA1][I|A^{-1}].


a) For matrix A=(111011001)A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}:

  1. Step 1: Write the augmented matrix [AI][A | I], where II is the identity matrix:

    1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \\ \end{pmatrix}$$
  2. Step 2: Apply row operations to turn the left-hand side into the identity matrix.

    • Row 1 is already fine. Focus on Row 2.
    • Subtract Row 2 from Row 1: R1=R1R2    (100111)R1' = R1 - R2 \implies \begin{pmatrix} 1 & 0 & 0 & | & 1 & -1 & 1 \end{pmatrix}

    Thus, the final matrix becomes:

    1 & 0 & 0 & | & 1 & -1 & 1 \\ 0 & 1 & 0 & | & 0 & 1 & -1 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$
  3. Conclusion: The inverse of matrix AA is:

    1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

b) For matrix A=(111231340)A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{pmatrix}:

  1. Step 1: Write the augmented matrix [AI][A | I]:

    1 & 1 & 1 & | & 1 & 0 & 0 \\ 2 & 3 & 1 & | & 0 & 1 & 0 \\ 3 & 4 & 0 & | & 0 & 0 & 1 \end{pmatrix}$$
  2. Step 2: Apply row operations to transform AA into the identity matrix.

    • First, subtract 2 times Row 1 from Row 2: R2=R22R1=(011210)R2' = R2 - 2R1 = \begin{pmatrix} 0 & 1 & -1 & | & -2 & 1 & 0 \end{pmatrix}

    • Subtract 3 times Row 1 from Row 3: R3=R33R1=(013301)R3' = R3 - 3R1 = \begin{pmatrix} 0 & 1 & -3 & | & -3 & 0 & 1 \end{pmatrix}

    • Now subtract Row 2 from Row 3 to get: R3=R3R2=(002111)R3'' = R3' - R2' = \begin{pmatrix} 0 & 0 & -2 & | & -1 & -1 & 1 \end{pmatrix}

    • Divide Row 3 by -2: R3=(001121212)R3''' = \begin{pmatrix} 0 & 0 & 1 & | & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}

    • Add 1 times Row 3 to Row 2: R2=(010321212)R2'' = \begin{pmatrix} 0 & 1 & 0 & | & -\frac{3}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}

    • Subtract 1 times Row 3 from Row 1: R1=(100521212)R1'' = \begin{pmatrix} 1 & 0 & 0 & | & \frac{5}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}

  3. Conclusion: The inverse of matrix AA is:

    \frac{5}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Let me know if you'd like any details about the steps or if you have further questions!

Related questions:

  1. How is the determinant of a matrix related to its invertibility?
  2. Can a matrix with a determinant of 0 have an inverse? Why or why not?
  3. What is the significance of row reduction in finding the inverse of a matrix?
  4. How does the Gauss-Jordan elimination method differ from other methods of finding the inverse?
  5. Can non-square matrices have inverses? Why or why not?

Tip: Always check if a matrix is invertible by calculating its determinant before attempting to find its inverse!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Inversion
Gauss-Jordan Elimination

Formulas

A^{-1} = Inverse of matrix A using Gauss-Jordan elimination
Row reduction

Theorems

Gauss-Jordan Elimination

Suitable Grade Level

Undergraduate (Math/Engineering)