Math Problem Statement

. Consider the set G of 3X3 matrices defined as follows:

10

10

C01

2

We define, as the G..) an abelian group? G= [[1, x, x], [0, 1, y], [0, 0, 1]] |x,y,x in mathbb R \

Solution

We are tasked with analyzing the set GG of 3×33 \times 3 matrices of the form:

1 & x & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \; \big| \; x, y \in \mathbb{R} \right\}.$$ and determining whether $$G$$ forms an **abelian group** under matrix multiplication. --- ### **Step 1: Group Properties** To determine if $$G$$ forms an abelian group under matrix multiplication, we must verify the following properties: 1. **Closure**: If $$A, B \in G$$, then $$AB \in G$$. 2. **Associativity**: Matrix multiplication is associative (always true for matrices). 3. **Identity**: There exists an identity matrix $$I \in G$$ such that $$IA = AI = A$$ for all $$A \in G$$. 4. **Inverse**: For every $$A \in G$$, there exists an inverse $$A^{-1} \in G$$. 5. **Commutativity**: $$AB = BA$$ for all $$A, B \in G$$. --- ### **Step 2: Closure** Take two arbitrary matrices $$A, B \in G$$ where: $$A = \begin{bmatrix} 1 & x_1 & x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & x_2 & x_2 \\ 0 & 1 & y_2 \\ 0 & 0 & 1 \end{bmatrix}.$$ Compute $$AB$$: \[ AB = \begin{bmatrix} 1 & x_1 & x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x_2 & x_2 \\ 0 & 1 & y_2 \\ 0 & 0 & 1 \end{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Group Theory
Matrix Algebra
Abelian Groups
Matrix Multiplication

Formulas

Matrix multiplication rules
Definition of an abelian group

Theorems

Group properties
Commutativity of abelian groups

Suitable Grade Level

Undergraduate Mathematics