Math Problem Statement
Solution
To find matrices and such that , we need:
- The eigenvalues of .
- The eigenvectors corresponding to these eigenvalues.
Finding eigenvalues:
For a triangular matrix, the eigenvalues are the entries on the diagonal. So, the eigenvalues of are:
Finding eigenvectors:
-
Eigenvector for :
Solve .
0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ $$x_3$$ is free. Choose $$x_3 = 1$$, giving $$x_2 = -5/3$$ and $$x_1 = -1/3$$. Eigenvector: $$\begin{pmatrix} -1/3 \\ -5/3 \\ 1 \end{pmatrix}$$. -
Eigenvector for :
Solve .
-3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ $$x_3$$ is free. Choose $$x_3 = 1$$, giving $$x_2 = 0$$ and $$x_1 = 1$$. Eigenvector: $$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$. -
Eigenvector for :
Solve .
-5 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ $$x_2$$ is free. Choose $$x_2 = 1$$, giving $$x_3 = 2/5$$ and $$x_1 = 1/5$$. Eigenvector: $$\begin{pmatrix} 1/5 \\ 1 \\ 2/5 \end{pmatrix}$$.
Construct matrices and :
1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$ $$P = \begin{pmatrix} -1/3 & 1 & 1/5 \\ -5/3 & 0 & 1 \\ 1 & 0 & 2/5 \end{pmatrix}$$ Now $$A = PDP^{-1}$$.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Matrix Diagonalization
Eigenvalues and Eigenvectors
Formulas
Matrix equation A = PDP⁻¹
Determinant and characteristic polynomial for eigenvalues
Solving (A - λI)x = 0 for eigenvectors
Theorems
Spectral Theorem for diagonalizability of matrices
Suitable Grade Level
College-level Mathematics
Related Recommendation
Eigenvalues, Eigenvectors, and Diagonalization of a 3x3 Matrix
Diagonalization of Matrix A = [[8, -8, -2], [4, -3, -2], [3, -4, 1]]
Diagonalization of a 3x3 Matrix with Eigenvalues and Eigenvectors
Diagonalization of Matrix A with Invertible Matrix P and Diagonal Matrix D
Diagonalization of a 3x3 Matrix with Eigenvalues and Powers