Math Problem Statement

Let A be the 3 × 3 matrix given by A = [[1, 2, 3], [0, 4, 5], [0, 0, 6]]. Find an invertible matrix P and a diagonal matrix D such that A = PDP⁻¹.

Solution

To find matrices PP and DD such that A=PDP1A = PDP^{-1}, we need:

  1. The eigenvalues of AA.
  2. The eigenvectors corresponding to these eigenvalues.

Finding eigenvalues:

For a triangular matrix, the eigenvalues are the entries on the diagonal. So, the eigenvalues of AA are:

  • λ1=1\lambda_1 = 1
  • λ2=4\lambda_2 = 4
  • λ3=6\lambda_3 = 6

Finding eigenvectors:

  1. Eigenvector for λ1=1\lambda_1 = 1:

    Solve (AI)x=0(A - I)x = 0.

    0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ $$x_3$$ is free. Choose $$x_3 = 1$$, giving $$x_2 = -5/3$$ and $$x_1 = -1/3$$. Eigenvector: $$\begin{pmatrix} -1/3 \\ -5/3 \\ 1 \end{pmatrix}$$.
  2. Eigenvector for λ2=4\lambda_2 = 4:

    Solve (A4I)x=0(A - 4I)x = 0.

    -3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ $$x_3$$ is free. Choose $$x_3 = 1$$, giving $$x_2 = 0$$ and $$x_1 = 1$$. Eigenvector: $$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$.
  3. Eigenvector for λ3=6\lambda_3 = 6:

    Solve (A6I)x=0(A - 6I)x = 0.

    -5 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ $$x_2$$ is free. Choose $$x_2 = 1$$, giving $$x_3 = 2/5$$ and $$x_1 = 1/5$$. Eigenvector: $$\begin{pmatrix} 1/5 \\ 1 \\ 2/5 \end{pmatrix}$$.

Construct matrices DD and PP:

1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$ $$P = \begin{pmatrix} -1/3 & 1 & 1/5 \\ -5/3 & 0 & 1 \\ 1 & 0 & 2/5 \end{pmatrix}$$ Now $$A = PDP^{-1}$$.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Diagonalization
Eigenvalues and Eigenvectors

Formulas

Matrix equation A = PDP⁻¹
Determinant and characteristic polynomial for eigenvalues
Solving (A - λI)x = 0 for eigenvectors

Theorems

Spectral Theorem for diagonalizability of matrices

Suitable Grade Level

College-level Mathematics