Math Problem Statement
If possible, find an invertible matrix <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>P</mi> </math> so that <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>D</mi> <mo>=</mo> <msup> <mi>P</mi> <mrow data-mjx-texclass="ORD"> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>A</mi> <mi>P</mi> </math> is a diagonal matrix. <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>A</mi>
<mo>=</mo>
<mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo>
<mtable columnalign="center center center" columnspacing="1em" rowspacing="4pt"> <mtr> <mtd><mo>−</mo>
<mn>3</mn>
</mtd> <mtd><mn>2</mn>
</mtd> <mtd><mo>−</mo>
<mn>8</mn>
</mtd> </mtr> <mtr> <mtd><mn>4</mn>
</mtd> <mtd><mo>−</mo>
<mn>1</mn>
</mtd> <mtd><mn>8</mn>
</mtd> </mtr> <mtr> <mtd><mn>2</mn>
</mtd> <mtd><mo>−</mo>
<mn>2</mn>
</mtd> <mtd><mn>7</mn>
</mtd> </mtr> </mtable><mo data-mjx-texclass="CLOSE">]</mo>
</mrow><mo>.</mo>
</math>Solution
To find the invertible matrix such that is a diagonal matrix, follow these steps:
Step 1: Find the eigenvalues of
The eigenvalues of are the roots of the characteristic equation: Here, is the identity matrix and represents the eigenvalues.
Step 2: Find the eigenvectors of
For each eigenvalue , solve to find the corresponding eigenvector(s). These eigenvectors will form the columns of the matrix .
Step 3: Construct and
- : Matrix whose columns are the eigenvectors of .
- : Diagonal matrix whose diagonal entries are the eigenvalues of .
Let's compute these step by step.import numpy as np
Define the matrix A
A = np.array([ [-3, 2, -8], [4, -1, 8], [2, -2, 7] ])
Step 1: Find eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(A)
Step 2: Construct the diagonal matrix D and matrix P
D = np.diag(eigenvalues) P = eigenvectors
eigenvalues, P, D(array([-1., 1., 3.]), array([[ 0.66666667, 0.40824829, -0.57735027], [-0.66666667, -0.81649658, 0.57735027], [-0.33333333, -0.40824829, 0.57735027]]), array([[-1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 3.]]))(array([-1., 1., 3.]), array([[ 0.66666667, 0.40824829, -0.57735027], [-0.66666667, -0.81649658, 0.57735027], [-0.33333333, -0.40824829, 0.57735027]]), array([[-1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 3.]]))successThe eigenvalues and eigenvectors of are as follows:
Eigenvalues
Matrix (formed by eigenvectors as columns)
0.667 & 0.408 & -0.577 \\ -0.667 & -0.816 & 0.577 \\ -0.333 & -0.408 & 0.577 \end{bmatrix}$$ ### Matrix $$D$$ (diagonal matrix of eigenvalues) $$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$ Thus, $$D = P^{-1}AP$$ holds true. Would you like to verify this computation or see how these matrices were derived? Here are some related questions: 1. Would you like to see the step-by-step computation of eigenvalues? 2. Should I verify $$P^{-1}AP = D$$? 3. Do you want an explanation of eigenvectors and their computation? 4. Would you like to visualize how eigenvectors relate to transformations? 5. Are you interested in generalizing this method for other matrices? **Tip:** Always verify $$P^{-1}AP = D$$ for numerical precision when working with floating-point operations.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Matrix Diagonalization
Eigenvalues and Eigenvectors
Formulas
Characteristic polynomial: det(A - λI) = 0
Eigenvector equation: (A - λI)x = 0
Matrix diagonalization: D = P^(-1)AP
Theorems
Eigenvalue theorem
Diagonalization theorem
Suitable Grade Level
Undergraduate Level