Math Problem Statement

If possible, find an invertible matrix <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>P</mi> </math> so that <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>D</mi> <mo>=</mo> <msup> <mi>P</mi> <mrow data-mjx-texclass="ORD"> <mo></mo> <mn>1</mn> </mrow> </msup> <mi>A</mi> <mi>P</mi> </math> is a diagonal matrix. <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">

<mi>A</mi>

<mo>=</mo>

<mrow data-mjx-texclass="INNER">

<mo data-mjx-texclass="OPEN">[</mo>

<mtable columnalign="center center center" columnspacing="1em" rowspacing="4pt"> <mtr> <mtd>

<mo></mo>

<mn>3</mn>

</mtd> <mtd>

<mn>2</mn>

</mtd> <mtd>

<mo></mo>

<mn>8</mn>

</mtd> </mtr> <mtr> <mtd>

<mn>4</mn>

</mtd> <mtd>

<mo></mo>

<mn>1</mn>

</mtd> <mtd>

<mn>8</mn>

</mtd> </mtr> <mtr> <mtd>

<mn>2</mn>

</mtd> <mtd>

<mo></mo>

<mn>2</mn>

</mtd> <mtd>

<mn>7</mn>

</mtd> </mtr> </mtable>

<mo data-mjx-texclass="CLOSE">]</mo>

</mrow>

<mo>.</mo>

</math>

Solution

To find the invertible matrix PP such that D=P1APD = P^{-1}AP is a diagonal matrix, follow these steps:

Step 1: Find the eigenvalues of AA

The eigenvalues of AA are the roots of the characteristic equation: det(AλI)=0\det(A - \lambda I) = 0 Here, II is the identity matrix and λ\lambda represents the eigenvalues.

Step 2: Find the eigenvectors of AA

For each eigenvalue λ\lambda, solve (AλI)x=0(A - \lambda I)x = 0 to find the corresponding eigenvector(s). These eigenvectors will form the columns of the matrix PP.

Step 3: Construct PP and DD

  • PP: Matrix whose columns are the eigenvectors of AA.
  • DD: Diagonal matrix whose diagonal entries are the eigenvalues of AA.

Let's compute these step by step.import numpy as np

Define the matrix A

A = np.array([ [-3, 2, -8], [4, -1, 8], [2, -2, 7] ])

Step 1: Find eigenvalues and eigenvectors

eigenvalues, eigenvectors = np.linalg.eig(A)

Step 2: Construct the diagonal matrix D and matrix P

D = np.diag(eigenvalues) P = eigenvectors

eigenvalues, P, D(array([-1., 1., 3.]), array([[ 0.66666667, 0.40824829, -0.57735027], [-0.66666667, -0.81649658, 0.57735027], [-0.33333333, -0.40824829, 0.57735027]]), array([[-1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 3.]]))(array([-1., 1., 3.]), array([[ 0.66666667, 0.40824829, -0.57735027], [-0.66666667, -0.81649658, 0.57735027], [-0.33333333, -0.40824829, 0.57735027]]), array([[-1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 3.]]))successThe eigenvalues and eigenvectors of AA are as follows:

Eigenvalues

λ1=1,λ2=1,λ3=3\lambda_1 = -1, \quad \lambda_2 = 1, \quad \lambda_3 = 3

Matrix PP (formed by eigenvectors as columns)

0.667 & 0.408 & -0.577 \\ -0.667 & -0.816 & 0.577 \\ -0.333 & -0.408 & 0.577 \end{bmatrix}$$ ### Matrix $$D$$ (diagonal matrix of eigenvalues) $$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$ Thus, $$D = P^{-1}AP$$ holds true. Would you like to verify this computation or see how these matrices were derived? Here are some related questions: 1. Would you like to see the step-by-step computation of eigenvalues? 2. Should I verify $$P^{-1}AP = D$$? 3. Do you want an explanation of eigenvectors and their computation? 4. Would you like to visualize how eigenvectors relate to transformations? 5. Are you interested in generalizing this method for other matrices? **Tip:** Always verify $$P^{-1}AP = D$$ for numerical precision when working with floating-point operations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Diagonalization
Eigenvalues and Eigenvectors

Formulas

Characteristic polynomial: det(A - λI) = 0
Eigenvector equation: (A - λI)x = 0
Matrix diagonalization: D = P^(-1)AP

Theorems

Eigenvalue theorem
Diagonalization theorem

Suitable Grade Level

Undergraduate Level