Math Problem Statement
Find the matrix C using the formula: C = A^2 - (AB)^T + 3E, given matrices A = [[5, -6], [0, -1]] and B = [[-1, 1], [3, 2]].
Solution
We are given two matrices and , and the task is to find matrix , which is given by the formula:
Where:
- is the square of matrix (i.e., ),
- is the transpose of the product of matrices and ,
- is the identity matrix of the same size as and .
Let's break down the problem:
Step 1: Define the matrices
Matrix and are:
Step 2: Calculate
First, we find the square of matrix , i.e., .
= \begin{pmatrix} 25 & -24 \\ 0 & 1 \end{pmatrix}$$ ### Step 3: Calculate $$AB$$ Next, we compute the product of matrices $$A$$ and $$B$$, i.e., $$A \times B$$. $$AB = \begin{pmatrix} 5 & -6 \\ 0 & -1 \end{pmatrix} \times \begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$$ $$AB = \begin{pmatrix} 5 \times (-1) + (-6) \times 3 & 5 \times 1 + (-6) \times 2 \\ 0 \times (-1) + (-1) \times 3 & 0 \times 1 + (-1) \times 2 \end{pmatrix}$$ $$AB = \begin{pmatrix} -5 + (-18) & 5 + (-12) \\ 0 + (-3) & 0 + (-2) \end{pmatrix} = \begin{pmatrix} -23 & -7 \\ -3 & -2 \end{pmatrix}$$ ### Step 4: Calculate $$(AB)^T$$ Now, we take the transpose of matrix $$AB$$. The transpose of a matrix is obtained by swapping its rows with its columns. $$(AB)^T = \begin{pmatrix} -23 & -7 \\ -3 & -2 \end{pmatrix}^T = \begin{pmatrix} -23 & -3 \\ -7 & -2 \end{pmatrix}$$ ### Step 5: Add the identity matrix $$3E$$ Since $$A$$ and $$B$$ are 2x2 matrices, the identity matrix $$E$$ is: $$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ Multiplying by 3: $$3E = 3 \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$ ### Step 6: Calculate matrix $$C$$ Finally, we combine the results to find matrix $$C$$. $$C = A^2 - (AB)^T + 3E$$ Substitute the matrices: $$C = \begin{pmatrix} 25 & -24 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} -23 & -3 \\ -7 & -2 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$ First, subtract: $$\begin{pmatrix} 25 & -24 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} -23 & -3 \\ -7 & -2 \end{pmatrix} = \begin{pmatrix} 25 - (-23) & -24 - (-3) \\ 0 - (-7) & 1 - (-2) \end{pmatrix} = \begin{pmatrix} 48 & -21 \\ 7 & 3 \end{pmatrix}$$ Now, add $$3E$$: \[ C = \begin{pmatrix} 48 & -21 \\ 7 & 3 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 48 + 3 & -21 +
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Multiplication
Matrix Transposition
Identity Matrix
Formulas
C = A^2 - (AB)^T + 3E
A^2 = A * A
(AB)^T = Transpose(A * B)
3E = 3 * Identity Matrix
Theorems
-
Suitable Grade Level
Grades 10-12