Math Problem Statement
gunakan induksi matematika untuk menunjukan bahwa jika diberi satu set bilangan bulat positif n+1, dan tidak ada yang melebihi 21, maka terdapat paling sedikit satu bilangan bulat dalam set tersebut yang dapat membagi bilangan bulat lain dalam set tersebut.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Mathematical Induction
Set Theory
Divisibility
Pigeonhole Principle
Formulas
-
Theorems
Pigeonhole Principle
Suitable Grade Level
Grades 10-12
Related Recommendation
Mathematical Induction Proof: Divisibility of 5^{2n} - 2^{3n} by 17
Proving Divisibility in Sets Using Pigeonhole Principle
Mathematical Induction: Prove 5^(n+1) - 4n + 11 is Divisible by 16
Understanding Strong Induction and Recursively Defined Functions in Mathematical Proof
Proof by Induction: Divisibility of 2^(2n+1) + 3^(2n+1) by 5