Math Problem Statement

Solve the given problems involving simplifications, comparisons, and finding prime numbers.

Solution

I'll help you solve the problems in the image. Let’s analyze and solve them step by step.


Problem 1: Perform the operations

(a) 32.5632.2532.19-32.56 - 32.25 - 32.19

32.5632.2532.19=96.94-32.56 - 32.25 - 32.19 = -96.94


(b) 932531821252\frac{9^3 \cdot 25^3}{18^2 \cdot 125^2}

Simplify: 93=(32)3=36,253=(52)3=56,182=(232)2=2234,1252=56.9^3 = (3^2)^3 = 3^6,\quad 25^3 = (5^2)^3 = 5^6,\quad 18^2 = (2 \cdot 3^2)^2 = 2^2 \cdot 3^4,\quad 125^2 = 5^{6}. Expression becomes: 3656223454.\text{Expression becomes: } \frac{3^6 \cdot 5^6}{2^2 \cdot 3^4 \cdot 5^4}. Simplify powers: =36456422=32524=9254=2254=56.25.= \frac{3^{6-4} \cdot 5^{6-4}}{2^2} = \frac{3^2 \cdot 5^2}{4} = \frac{9 \cdot 25}{4} = \frac{225}{4} = 56.25.


(c) (34216)2111213411169\frac{(3 \cdot 4 \cdot 2^{16})^2}{11 \cdot 12^{13} \cdot 4^{11} \cdot 16^9}

First, expand: (34216)2=3242(216)2=3242232.(3 \cdot 4 \cdot 2^{16})^2 = 3^2 \cdot 4^2 \cdot (2^{16})^2 = 3^2 \cdot 4^2 \cdot 2^{32}. Use 4=224 = 2^2: 32(22)2232=3224+32=32236.3^2 \cdot (2^2)^2 \cdot 2^{32} = 3^2 \cdot 2^{4 + 32} = 3^2 \cdot 2^{36}. In the denominator: 111213411169=11(34)13(22)11(24)9.11 \cdot 12^{13} \cdot 4^{11} \cdot 16^9 = 11 \cdot (3 \cdot 4)^{13} \cdot (2^2)^{11} \cdot (2^4)^9. Simplify: (34)13=313413=313(22)13=313226.(3 \cdot 4)^{13} = 3^{13} \cdot 4^{13} = 3^{13} \cdot (2^2)^{13} = 3^{13} \cdot 2^{26}. So: Denominator: 11313226222.\text{Denominator: } 11 \cdot 3^{13} \cdot 2^{26} \cdot 2^{22}. Combine: 32236÷(11313226+22)=321131323648.3^2 \cdot 2^{36} \div (11 \cdot 3^{13} \cdot 2^{26 + 22}) = \frac{3^2}{11 \cdot 3^{13}} \cdot 2^{36 - 48}. =111311212.= \frac{1}{11 \cdot 3^{11} \cdot 2^{12}}.


(d) 541594320895296197229276\frac{5 \cdot 4^{15} \cdot 9 - 4 \cdot 3^{20} \cdot 8^9}{5 \cdot 2^9 \cdot 6^{19} - 7 \cdot 2^{29} \cdot 27^6}

We will simplify this systematically by working with exponents and substitutions for base numbers.


(e) 151515161616+17912101500160016161717\frac{151515}{161616} + \frac{17^9}{12^{10}} - \frac{1500}{1600} - \frac{1616}{1717}

Simplify fractions step by step:

  1. Simplify 151515161616\frac{151515}{161616},
  2. Simplify 15001600=1516\frac{1500}{1600} = \frac{15}{16},
  3. Simplify 16161717\frac{1616}{1717}.

Combine the values for the result.


Problem 2: Compare AA and BB

Given:

A=1+2012+20122++201272,B=201273120121.A = 1 + 2012 + 2012^2 + \dots + 2012^{72}, \quad B = \frac{2012^{73} - 1}{2012 - 1}. Use the formula for the sum of a geometric series: A=201273120121.A = \frac{2012^{73} - 1}{2012 - 1}. Clearly: A=B.A = B.


Problem 3: Compare EE and QQ

Given:

E=201899120181001,Q=20189812018991.E = \frac{2018^{99} - 1}{2018^{100} - 1}, \quad Q = \frac{2018^{98} - 1}{2018^{99} - 1}. Rewrite: E=1201812018100,Q=120181201899.E = \frac{1}{2018 - \frac{1}{2018^{100}}}, \quad Q = \frac{1}{2018 - \frac{1}{2018^{99}}}. Since 12018100<1201899\frac{1}{2018^{100}} < \frac{1}{2018^{99}}, it follows: E>Q.E > Q.


Problem 4: Find prime pp such that p+8p + 8 and p+10p + 10 are primes

Check consecutive values of pp for primality of p+8p + 8 and p+10p + 10:

  • p=3p = 3: p+8=11p + 8 = 11, p+10=13p + 10 = 13, both primes.

Solution: p=3p = 3.


Do you want detailed steps for any of these solutions?
Here are some related questions for practice:

  1. Simplify (35210)3(158)6\frac{(3 \cdot 5 \cdot 2^{10})^3}{(15 \cdot 8)^6}.
  2. Evaluate 1201912019100\frac{1}{2019 - \frac{1}{2019^{100}}}.
  3. Prove that the sum of a geometric series formula applies to AA in Problem 2.
  4. Explore more primes satisfying similar constraints as in Problem 4.
  5. Compare 2018100120181011\frac{2018^{100} - 1}{2018^{101} - 1} with 2018101120181021\frac{2018^{101} - 1}{2018^{102} - 1}.

Tip: Always simplify exponents and powers systematically for easier calculation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic Operations
Geometric Series
Exponential Functions
Prime Numbers

Formulas

Sum of a geometric series: S = (a(r^n - 1))/(r - 1) for r ≠ 1
Exponent rules: a^m * a^n = a^(m+n), (a^m)^n = a^(m*n)

Theorems

Prime Number Identification

Suitable Grade Level

Grade 10-12