Math Problem Statement

Answer with explanation

Mathematics problems from a French exam, requiring completion of algebraic equations, proportions, and calculations.

Solution

Solution Explanation

The uploaded image is a mathematics test in French, containing various types of problems. I will address the questions step-by-step, explaining each one clearly.


Question (1): Complète

  1. Si 5a=3b5a = 3b, alors a:b=?a : b = ?
    • From 5a=3b5a = 3b, divide both sides by bb:
      5ab=3    a:b=35.\frac{5a}{b} = 3 \implies a : b = \frac{3}{5}.

  1. Si card(X)=5\text{card}(X) = 5 et card(X×Y)=15\text{card}(X \times Y) = 15, alors card(Y)=?\text{card}(Y) = ?
    • The cardinality of the Cartesian product X×YX \times Y is given by:
      card(X×Y)=card(X)card(Y).\text{card}(X \times Y) = \text{card}(X) \cdot \text{card}(Y).
      Substituting:
      15=5card(Y)    card(Y)=3.15 = 5 \cdot \text{card}(Y) \implies \text{card}(Y) = 3.

  1. Si (x+5;8)=(1;6y+x)(x + 5; 8) = (1; 6y + x), alors y=?y = ?
    • For two ordered pairs to be equal, their corresponding components must be equal: x+5=1    x=4,x + 5 = 1 \implies x = -4,
      and
      8=6y+x.8 = 6y + x.
      Substituting x=4x = -4:
      8=6y4    6y=12    y=2.8 = 6y - 4 \implies 6y = 12 \implies y = 2.

  1. Si f(x)=5x7f(x) = 5x - 7, alors f(3)=?f(3) = ?
    • Substitute x=3x = 3 into the function f(x)f(x):
      f(3)=5(3)7=157=8.f(3) = 5(3) - 7 = 15 - 7 = 8.

  1. Si f(x)=6xf(x) = 6x, alors f(2)+f(2)=?f(2) + f(2) = ?
    • Calculate f(2)f(2):
      f(2)=6(2)=12.f(2) = 6(2) = 12.
      Then:
      f(2)+f(2)=12+12=24.f(2) + f(2) = 12 + 12 = 24.

  1. Si 3a+4b+b(4)=133a + 4b + b(4) = 13, alors b=?b = ?
    • Rewrite as 3a+4b+4b=133a + 4b + 4b = 13:
      3a+8b=13.3a + 8b = 13.
      Since aa is not specified, we cannot uniquely determine bb without further information.

  1. Si 4x=7y=2yx\frac{4}{x} = \frac{7}{y} = \frac{2}{y - x}, alors a=?a = ?
    • Use proportionality relationships:
      • From 4x=7y\frac{4}{x} = \frac{7}{y}, cross-multiply:
        4y=7x.4y = 7x.
      • From 7y=2yx\frac{7}{y} = \frac{2}{y - x}, cross-multiply:
        7(yx)=2y.7(y - x) = 2y.
        Simplify:
        7y7x=2y    5y=7x.7y - 7x = 2y \implies 5y = 7x.
        Combining 4y=7x4y = 7x and 5y=7x5y = 7x, we solve for aa.

  1. Si x6=0x - 6 = 0, alors x=?x = ?
    • Solve directly:
      x6=0    x=6.x - 6 = 0 \implies x = 6.

Question (2): Choisis la bonne réponse entre les parenthèses

  1. Si 3,6,x,43, 6, x, 4 forment une proportion, alors x=?x = ?
    • In a proportion:
      36=x4.\frac{3}{6} = \frac{x}{4}.
      Cross-multiply:
      34=6x    12=6x    x=2.3 \cdot 4 = 6 \cdot x \implies 12 = 6x \implies x = 2.

  1. Si xy=35\frac{x}{y} = \frac{3}{5}, alors 2x+yx+2y=?\frac{2x + y}{x + 2y} = ?
    • Substitute xy=35\frac{x}{y} = \frac{3}{5}:
      x=3k,y=5k.x = 3k, \, y = 5k.
      Substituting into 2x+yx+2y\frac{2x + y}{x + 2y}:
      2(3k)+5k3k+2(5k)=6k+5k3k+10k=11k13k=1113.\frac{2(3k) + 5k}{3k + 2(5k)} = \frac{6k + 5k}{3k + 10k} = \frac{11k}{13k} = \frac{11}{13}.

  1. La moyenne proportionnelle de x24\sqrt{x^2 - 4} et x+2x + 2 est...?
    • The geometric mean of aa and bb is ab\sqrt{a \cdot b}:
      x24(x+2).\sqrt{\sqrt{x^2 - 4} \cdot (x + 2)}.

  1. Si x+y=5x + y = 5, xy=6x y = 6, alors x2y+y2x=?x^2 y + y^2 x = ?
    • Simplify using symmetric sums:
      x2y+y2x=xy(x+y).x^2 y + y^2 x = xy(x + y).
      Substituting:
      xy=6,x+y=5    65=30.xy = 6, \, x + y = 5 \implies 6 \cdot 5 = 30.

  1. L'étendue des valeurs 5;14;4;21;16;125; 14; 4; 21; 16; 12 est...?
    • Range (eˊtendue\text{étendue}) = max - min:
      eˊtendue=214=17.\text{étendue} = 21 - 4 = 17.

Let me know if you'd like further clarifications!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Proportions
Cartesian Product
Linear Equations
Functions
Geometric Mean
Symmetric Sums
Range and Standard Deviation

Formulas

a : b = c : d implies ad = bc
card(X × Y) = card(X) × card(Y)
f(x) = ax + b
Geometric Mean = sqrt(a × b)
Range = max - min
Symmetric sum: x^2 y + y^2 x = xy(x + y)

Theorems

Proportionality Theorem
Arithmetic and Geometric Mean Theorem

Suitable Grade Level

Grade 8-10