Math Problem Statement

1. Data suatu populasi mangrove pengukuran tinggi 100 pohon memiliki data terendah adalah 5 m, dengan jangkauan data (Range) adalah 49. Jika data dikelompokkan dalam 10 kelas dengan fekuensi data berturut-turut adalah 6, 31, h, 22, 11, 6, 5, 4, 1, 1, akan diperoleh nilai standar deviasi sebesar 9.85, hitung: Berapa nilai h, median, modus, jangkauan quartil (Q3-Q1), dan jangkauan persentil (P90-P10)? 2. Buktikan bahwa varians data diatas jika dihitung dengan persamaan varians menghasilkan nilai yang sama.

Solution

The problem you've shared involves two questions. Let's break them down:

Question 1:

The data represents the height measurements of 100 mangrove trees, with:

  • The lowest data point = 5 m.
  • The range of data = 49.
  • The data is grouped into 10 classes with respective frequencies 6,31,h,22,11,6,5,4,1,16, 31, h, 22, 11, 6, 5, 4, 1, 1.
  • Standard deviation =9.85= 9.85.

The task is to find:

  • The missing value hh.
  • Median, mode, interquartile range (IQR = Q3Q1Q3 - Q1).
  • Percentile range P90P10P90 - P10.

Approach to solve:

  1. Determine the missing value hh:

    • The total sum of frequencies must equal 100.
    • Using this fact, we can find hh.
  2. Median:

    • The median is the value at the 50th percentile. You will locate the class containing the 50th data point.
  3. Mode:

    • The mode is the class with the highest frequency.
  4. Interquartile Range (IQR = Q3Q1Q3 - Q1):

    • You need to find the values at the 25th percentile (Q1Q1) and 75th percentile (Q3Q3) and subtract them.
  5. Percentile range P90P10P90 - P10:

    • This is the difference between the values at the 90th percentile (P90P90) and 10th percentile (P10P10).

Question 2:

You are asked to prove that the variance calculated using the given formula: σ2=fxi2(fxi)2ff\sigma^2 = \frac{\sum f x_i^2 - \frac{(\sum f x_i)^2}{\sum f}}{\sum f} produces the same result.

This requires a theoretical demonstration of the equivalence of this variance formula with the standard formula for variance.

Let me know if you would like to proceed step by step or need more details on any specific part!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Descriptive Statistics
Frequency Distribution
Percentile Range
Standard Deviation
Variance

Formulas

Variance formula: σ^2 = (Σf * x_i^2 - (Σf * x_i)^2 / Σf) / Σf
Standard deviation: σ = √Variance
Quartile range (IQR) = Q3 - Q1
Percentile range = P90 - P10

Theorems

Variance and Standard Deviation
Quartile and Percentile Calculation

Suitable Grade Level

University Level