Math Problem Statement

Using the part (i), write down the Maclaurin series of cosh(x), where cosh(x)=12\frac12(exe^{x} + exe^{-x})

Solution

To find the Maclaurin series for cosh(x)\cosh(x), we can use the given definition:

cosh(x)=12(ex+ex)\cosh(x) = \frac{1}{2} \left( e^x + e^{-x} \right)

We already know the Maclaurin series for exe^x:

ex=1+x1!+x22!+x33!+x44!+e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots

The Maclaurin series for exe^{-x} can be obtained by replacing xx with x-x in the series for exe^x:

ex=1x1!+x22!x33!+x44!e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots

Now, add the series for exe^x and exe^{-x}:

ex+ex=(1+x1!+x22!+x33!+x44!+)+(1x1!+x22!x33!+x44!)e^x + e^{-x} = \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots\right) + \left(1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots\right)

This simplifies to:

ex+ex=2+2x22!+2x44!+e^x + e^{-x} = 2 + \frac{2x^2}{2!} + \frac{2x^4}{4!} + \cdots

Finally, divide by 2 to get cosh(x)\cosh(x):

cosh(x)=12(ex+ex)=1+x22!+x44!+\cosh(x) = \frac{1}{2} \left(e^x + e^{-x}\right) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots

Thus, the Maclaurin series for cosh(x)\cosh(x) is:

cosh(x)=n=0x2n(2n)!\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}

Do you want more details or have any questions?

Here are some related questions:

  1. What is the Maclaurin series for sinh(x)\sinh(x)?
  2. How can you use the Maclaurin series to approximate cosh(x)\cosh(x) for small values of xx?
  3. What are the derivatives of cosh(x)\cosh(x) at x=0x = 0?
  4. How does the series for cosh(x)\cosh(x) compare to the series for cos(x)\cos(x)?
  5. What is the radius of convergence for the Maclaurin series of cosh(x)\cosh(x)?

Tip: For even functions like cosh(x)\cosh(x), only even powers of xx appear in the series expansion, making it easier to compute specific values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Maclaurin series
Hyperbolic functions
Series expansions

Formulas

Maclaurin series formula
Hyperbolic cosine formula

Theorems

-

Suitable Grade Level

Advanced Mathematics