Math Problem Statement

Use the binomial series to find the Maclaurin series for the function.

f(x) = 1 / (1 + x)^3 f(x) = Σ n = 0

Solution

To find the Maclaurin series for f(x)=1(1+x)3f(x) = \frac{1}{(1+x)^3}, we can use the binomial series expansion. The general formula for the binomial series is:

(1+x)k=n=0(kn)xn(1 + x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n

where (kn)\binom{k}{n} (the binomial coefficient) is defined as:

(kn)=k(k1)(k2)(kn+1)n!,for n1,(k0)=1.\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}, \quad \text{for } n \geq 1, \quad \binom{k}{0} = 1.

Here, k=3k = -3, since the function is (1+x)3(1 + x)^{-3}. Substituting k=3k = -3 into the binomial expansion formula, we get:

1(1+x)3=(1+x)3=n=0(3n)xn\frac{1}{(1+x)^3} = (1+x)^{-3} = \sum_{n=0}^{\infty} \binom{-3}{n} x^n

Step 1: Compute the binomial coefficient

For (3n)\binom{-3}{n}, the formula becomes: (3n)=(3)(31)(32)(3n+1)n!=(3)(4)(5)(3n+1)n!.\binom{-3}{n} = \frac{(-3)(-3-1)(-3-2)\cdots(-3-n+1)}{n!} = \frac{(-3)(-4)(-5)\cdots(-3-n+1)}{n!}.

Step 2: Write the series

Let us explicitly write the first few terms of the series:

1(1+x)3=n=0(3n)xn.\frac{1}{(1+x)^3} = \sum_{n=0}^{\infty} \binom{-3}{n} x^n.

For n=0n = 0: (30)=1term: 1.\binom{-3}{0} = 1 \quad \Rightarrow \quad \text{term: } 1.

For n=1n = 1: (31)=31!=3term: 3x.\binom{-3}{1} = \frac{-3}{1!} = -3 \quad \Rightarrow \quad \text{term: } -3x.

For n=2n = 2: (32)=3(4)2!=122=6term: 6x2.\binom{-3}{2} = \frac{-3(-4)}{2!} = \frac{12}{2} = 6 \quad \Rightarrow \quad \text{term: } 6x^2.

For n=3n = 3: (33)=3(4)(5)3!=606=10term: 10x3.\binom{-3}{3} = \frac{-3(-4)(-5)}{3!} = \frac{-60}{6} = -10 \quad \Rightarrow \quad \text{term: } -10x^3.

For n=4n = 4: (34)=3(4)(5)(6)4!=36024=15term: 15x4.\binom{-3}{4} = \frac{-3(-4)(-5)(-6)}{4!} = \frac{360}{24} = 15 \quad \Rightarrow \quad \text{term: } 15x^4.

Step 3: Write the general form and the first few terms

Thus, the Maclaurin series for 1(1+x)3\frac{1}{(1+x)^3} is:

f(x)=1(1+x)3=n=0(3n)xn=13x+6x210x3+15x4f(x) = \frac{1}{(1+x)^3} = \sum_{n=0}^{\infty} \binom{-3}{n} x^n = 1 - 3x + 6x^2 - 10x^3 + 15x^4 - \cdots

Final Answer:

f(x)=n=0(3n)xn=n=0(3)(31)(32)(3n+1)n!xn.f(x) = \sum_{n=0}^{\infty} \binom{-3}{n} x^n = \sum_{n=0}^{\infty} \frac{(-3)(-3-1)(-3-2)\cdots(-3-n+1)}{n!} x^n.

Do you want to see more detailed steps or examples?


5 Related Questions:

  1. How can we use the binomial series to approximate (1+x)k(1+x)^k for small xx?
  2. What is the radius of convergence of the Maclaurin series for 1(1+x)3\frac{1}{(1+x)^3}?
  3. How would this series change if the function were 1(1x)3\frac{1}{(1-x)^3}?
  4. What are the applications of binomial series in real-world problems?
  5. How can we use the derivative of the series to verify the expansion?

Tip:

When using the binomial series, always confirm the conditions for convergence (x<1|x| < 1 in this case) to ensure validity!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Series
Maclaurin Series
Power Series Expansion
Binomial Coefficients

Formulas

(1 + x)^k = Σ (from n=0 to ∞) [C(k, n) * x^n]
C(k, n) = (k * (k-1) * (k-2) * ... * (k-n+1)) / n!

Theorems

Binomial Theorem
Maclaurin Series Expansion

Suitable Grade Level

Grades 11-12