Math Problem Statement

Semesta pembicaraannya adalah himpunan orang-orang. m(x): x adalah mahasiswa, sedangkan p(x): x adalah pandai. Tulislah dengan simbolisme logika kalimat-kalimat di bawah ini: a. Semua mahasiswa adalah pandai b. Tidak ada mahasiswa yang pandai c. Beberapa mahasiswa adalah pandai d. Beberapa mahasiswa tidaklah pandai

Solution

This problem asks to express statements using logical symbols. The universe of discourse is a set of people, where:

  • m(x)m(x): xx is a student.
  • p(x)p(x): xx is intelligent.

Here are the logical symbolic expressions for each statement:

a. Semua mahasiswa adalah pandai.
(All students are intelligent.)
This is a universal quantifier statement:
x(m(x)p(x))\forall x (m(x) \rightarrow p(x)) Translation: "For all xx, if xx is a student, then xx is intelligent."


b. Tidak ada mahasiswa yang pandai.
(No students are intelligent.)
This is a negated existential statement:
¬x(m(x)p(x))\neg \exists x (m(x) \land p(x)) Translation: "There does not exist an xx such that xx is a student and xx is intelligent."


c. Beberapa mahasiswa adalah pandai.
(Some students are intelligent.)
This is an existential quantifier statement:
x(m(x)p(x))\exists x (m(x) \land p(x)) Translation: "There exists an xx such that xx is a student and xx is intelligent."


d. Beberapa mahasiswa tidaklah pandai.
(Some students are not intelligent.)
This is an existential quantifier with a negation:
x(m(x)¬p(x))\exists x (m(x) \land \neg p(x)) Translation: "There exists an xx such that xx is a student and xx is not intelligent."

Would you like a detailed breakdown of any of these steps or need further clarification?


Here are 5 questions to expand the understanding:

  1. How would you express "Only students are intelligent" using logical symbols?
  2. Can you express "At least one student is not intelligent" in another form?
  3. What is the difference between universal and existential quantifiers?
  4. How would you negate the statement "Some students are intelligent" logically?
  5. What would happen if we change the universe of discourse to only students?

Tip: Be careful when translating statements with "no" or "none" as these often involve negating an existential quantifier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Quantifiers
Logical Expressions

Formulas

∀x (m(x) → p(x))
¬∃x (m(x) ∧ p(x))
∃x (m(x) ∧ p(x))
∃x (m(x) ∧ ¬p(x))

Theorems

Universal Quantification
Existential Quantification
Negation in Logic

Suitable Grade Level

Grades 11-12