Math Problem Statement

Solve the logarithmic equations: log_4(2.56) + log_4(6.25), sqrt(log_sqrt(3)(9)), log_0.04(5^4 * 0.2), log_25(log_27(3 * root(5, 3))), log_a(sqrt(a^3 / b)) given b^5 = a^4.

Solution

Let me process the mathematical problems visible in the image and solve them step by step.Here are the problems extracted from the image and their solutions:


1. log42.56+log46.25\log_4{2.56} + \log_4{6.25}:

Using the property of logarithms:
logax+logay=loga(xy)\log_a{x} + \log_a{y} = \log_a{(x \cdot y)}

We combine: log4(2.566.25)\log_4{(2.56 \cdot 6.25)}

Calculate 2.566.25=162.56 \cdot 6.25 = 16: log416\log_4{16}

Rewrite 16=4216 = 4^2, so: log442=2\log_4{4^2} = 2

Answer: 22


2. log39\sqrt{\log_{\sqrt{3}}{9}}:

First, simplify log39\log_{\sqrt{3}}{9}. Rewrite 9=(3)49 = (\sqrt{3})^4, so: log39=log3(3)4=4\log_{\sqrt{3}}{9} = \log_{\sqrt{3}}{(\sqrt{3})^4} = 4

Now take the square root: 4=2\sqrt{4} = 2

Answer: 22


3. log0.04(540.2)\log_{0.04}{\left( 5^{4} \cdot 0.2 \right)}:

Simplify the argument first: 54=625,6250.2=1255^4 = 625, \quad 625 \cdot 0.2 = 125

Thus: log0.04125\log_{0.04}{125}

Rewrite 0.04=1/250.04 = 1/25 and 125=53125 = 5^3. Using the base change: log1/25125=log25125\log_{1/25}{125} = -\log_{25}{125}

Rewrite 125=253/2125 = 25^{3/2}: log25125=log25(253/2)=3/2\log_{25}{125} = \log_{25}{(25^{3/2})} = 3/2

Finally: log25125=32-\log_{25}{125} = -\frac{3}{2}

Answer: 32-\frac{3}{2}


4. log25log27(335)\log_{25}{\log_{27}{(3 \sqrt[5]{3})}}:

First, simplify log27(335)\log_{27}{(3 \sqrt[5]{3})}. Rewrite: 335=31+15=3653 \sqrt[5]{3} = 3^{1 + \frac{1}{5}} = 3^{\frac{6}{5}}

Thus: log27(335)=log27(36/5)\log_{27}{(3 \sqrt[5]{3})} = \log_{27}{(3^{6/5})}

Since 27=3327 = 3^3, we have: log27(36/5)=6/53=25\log_{27}{(3^{6/5})} = \frac{6/5}{3} = \frac{2}{5}

Now for log2525\log_{25}{\frac{2}{5}}: Since no simplification is possible, the final answer is left in terms of: log2525\log_{25}{\frac{2}{5}}

Answer: log2525\log_{25}{\frac{2}{5}}


5. logaa3b\log_a{\sqrt{\frac{a^3}{b}}}, given b5=a4b^5 = a^4:

Simplify the logarithmic argument: a3b=(a3b)1/2=a3/2b1/2\sqrt{\frac{a^3}{b}} = \left( \frac{a^3}{b} \right)^{1/2} = \frac{a^{3/2}}{b^{1/2}}

Using the logarithm property: logaa3/2b1/2=logaa3/2logab1/2\log_a{\frac{a^{3/2}}{b^{1/2}}} = \log_a{a^{3/2}} - \log_a{b^{1/2}}

Simplify each term: logaa3/2=32,logab1/2=12logab\log_a{a^{3/2}} = \frac{3}{2}, \quad \log_a{b^{1/2}} = \frac{1}{2} \log_a{b}

From b5=a4b^5 = a^4, rewrite b=a4/5b = a^{4/5}: logab=loga(a4/5)=45\log_a{b} = \log_a{(a^{4/5})} = \frac{4}{5}

Thus: logab1/2=1245=25\log_a{b^{1/2}} = \frac{1}{2} \cdot \frac{4}{5} = \frac{2}{5}

Finally: 3225=1510410=1110\frac{3}{2} - \frac{2}{5} = \frac{15}{10} - \frac{4}{10} = \frac{11}{10}

Answer: 1110\frac{11}{10}


Do you have any questions or need further clarifications?


Expanding Questions:

  1. Can you explain more about the properties of logarithms used in problem 1?
  2. How is the base change formula applied in logarithms (problem 3)?
  3. Why is b5=a4b^5 = a^4 important in problem 5?
  4. Can we generalize logarithmic solutions with fractional bases like in problem 2?
  5. How does x5\sqrt[5]{x} simplify in logarithmic expressions?

Tip: Always simplify the argument of the logarithm before applying properties for easier calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Logarithmic Properties
Simplifying Expressions
Fractional Exponents

Formulas

log_a(x * y) = log_a(x) + log_a(y)
log_a(x^n) = n * log_a(x)
Change of Base Formula: log_a(b) = log_c(b) / log_c(a)

Theorems

Properties of Exponents
Logarithmic Simplification

Suitable Grade Level

Grades 9-12