Math Problem Statement

Solve the inequality: log(sqrt(36x^2 + 12x + 1)/(6x + 1)^6) - log_3(27 * (6x + 1)^2) ≥ -6

Solution

Let's solve the inequality given in the image:

log(36x2+12x+1(6x+1)6)log3(27(6x+1)2)6\log \left( \frac{\sqrt{36x^2 + 12x + 1}}{(6x + 1)^6} \right) - \log_3 \left( 27 \cdot (6x + 1)^2 \right) \geq -6

Step-by-step solution:

  1. Simplify the logarithmic terms:
    • The first part involves the logarithmic expression log(36x2+12x+1(6x+1)6)\log \left( \frac{\sqrt{36x^2 + 12x + 1}}{(6x + 1)^6} \right). Using the logarithmic rule log(ab)=log(a)log(b)\log \left( \frac{a}{b} \right) = \log(a) - \log(b), we split it: log(36x2+12x+1)log((6x+1)6)\log \left( \sqrt{36x^2 + 12x + 1} \right) - \log \left( (6x + 1)^6 \right)

    • Now, simplify both parts: [ \log \left( \sqrt{36x^2 + 12x + 1} \right) = \frac{1}{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Inequalities
Algebra
Exponents
Logarithmic Properties

Formulas

log(a/b) = log(a) - log(b)
log(x^n) = n * log(x)
log_a(x) = log_b(x) / log_b(a) (Change of base formula)

Theorems

Logarithmic properties
Change of base formula

Suitable Grade Level

Grades 10-12