Math Problem Statement

solve \displaylineslogablogacblogadlogcd, when a>1,b>1,c>1 and d>1. what are the values of a,b,c and d?{\displaylines\frac{\log_{a}b}{\log_{ac}b}-\frac{\log_{a}d}{\log_{c}d},\text{ when a}>1,b>1,c>1\text{ and d}>1.\text{ what are the values of }a,b,c\text{ and }d?\\ }

Solution

To solve the expression

logablogacblogadlogcd\frac{\log_{a}b}{\log_{ac}b}-\frac{\log_{a}d}{\log_{c}d}

let's first break down each term.

1. Simplify logablogacb\frac{\log_{a}b}{\log_{ac}b}

We can use the change of base formula, logab=logbloga\log_{a}b = \frac{\log b}{\log a}, to rewrite each term:

logab=logbloga\log_{a}b = \frac{\log b}{\log a} logacb=logblog(ac)=logbloga+logc\log_{ac} b = \frac{\log b}{\log(ac)} = \frac{\log b}{\log a + \log c}

So,

logablogacb=logblogalogbloga+logc=logblogaloga+logclogb\frac{\log_{a}b}{\log_{ac}b} = \frac{\frac{\log b}{\log a}}{\frac{\log b}{\log a + \log c}} = \frac{\log b}{\log a} \cdot \frac{\log a + \log c}{\log b}

This simplifies to:

loga+logcloga=1+logcloga=1+logac\frac{\log a + \log c}{\log a} = 1 + \frac{\log c}{\log a} = 1 + \log_{a}c

2. Simplify logadlogcd\frac{\log_{a}d}{\log_{c}d}

Similarly, using the change of base formula:

logad=logdloga\log_{a}d = \frac{\log d}{\log a} logcd=logdlogc\log_{c}d = \frac{\log d}{\log c}

So,

logadlogcd=logdlogalogdlogc=logdlogalogclogd=logcloga=logac\frac{\log_{a}d}{\log_{c}d} = \frac{\frac{\log d}{\log a}}{\frac{\log d}{\log c}} = \frac{\log d}{\log a} \cdot \frac{\log c}{\log d} = \frac{\log c}{\log a} = \log_{a}c

3. Substitute into the original expression

Now substitute the simplified terms back into the original expression:

(1+logac)logac\left(1 + \log_{a}c\right) - \log_{a}c

This simplifies to:

11

Hence, the value of the entire expression is 1, regardless of the values of aa, bb, cc, and dd as long as the conditions a>1a > 1, b>1b > 1, c>1c > 1, and d>1d > 1 are met.

Questions for further understanding:

  1. How does the change of base formula work in logarithms?
  2. What are the conditions under which logarithmic properties can be applied?
  3. How would the expression change if we had a,b,c,a, b, c, or d1d \leq 1?
  4. What would be the result if one of the variables a,b,c,a, b, c, or dd was unknown?
  5. Can this result be generalized to expressions with different base logarithms?

Tip: When dealing with complex expressions involving logarithms, using the change of base formula can greatly simplify the problem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Change of Base Formula
Logarithmic Simplification

Formulas

Change of Base Formula: \( \log_{a}b = \frac{\log b}{\log a} \)
Logarithmic Simplification: \( \frac{\log_{a}b}{\log_{ac}b} = 1 + \log_{a}c \)
Logarithmic Simplification: \( \frac{\log_{a}d}{\log_{c}d} = \log_{a}c \)

Theorems

Change of Base Theorem

Suitable Grade Level

Grades 10-12