Math Problem Statement

Honors Enrichment 6.5.pdf

226.41 KB

evaluate the even numbered expreesions. use the table to approximate the value of the logarithmic expression

Solution

To evaluate the even-numbered logarithmic expressions from the provided exercises, I'll follow the steps laid out using logarithmic properties, and where necessary, approximate values from the provided table.

Let's begin:

2. 5log545log595\log_5 45 - \log_5 9

Using logarithmic properties: logb(mn)=logbm+logbnandlogb(mn)=logbmlogbn\log_b(mn) = \log_b m + \log_b n \quad \text{and} \quad \log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n

This simplifies as follows: 5log545=log5455andlog59=log595\log_5 45 = \log_5 45^5 \quad \text{and} \quad \log_5 9 = \log_5 9 From the table, approximate values can be used: log5452.6561andlog591.4307\log_5 45 \approx 2.6561 \quad \text{and} \quad \log_5 9 \approx 1.4307 Thus, 5(2.6561)1.4307=13.28051.4307=11.84985(2.6561) - 1.4307 = 13.2805 - 1.4307 = 11.8498

4. log530log34\log_5 30 - \log_3 4

Using properties of logarithms: logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n This expression becomes: log5(304)\log_5 \left(\frac{30}{4}\right) We can approximate the values based on the table: log5302.6826andlog341.2619\log_5 30 \approx 2.6826 \quad \text{and} \quad \log_3 4 \approx 1.2619 Thus, 2.68261.2619=1.42072.6826 - 1.2619 = 1.4207

6. log61+log636+log65\log_6 1 + \log_6 36 + \log_6 5

Since logb1=0\log_b 1 = 0, the expression simplifies to: 0+log636+log65=log61800 + \log_6 36 + \log_6 5 = \log_6 180 From the logarithmic properties or table, we approximate: log61802.7284\log_6 180 \approx 2.7284

8. log3209\log_3 209

From the table, approximate: log32094.5282\log_3 209 \approx 4.5282

10. log26+log28+log216\log_2 6 + \log_2 8 + \log_2 16

Using the property logb(mn)=logbm+logbn\log_b(mn) = \log_b m + \log_b n, this becomes: log2(6×8×16)=log2768\log_2(6 \times 8 \times 16) = \log_2 768 From the table, approximate: log27689.589\log_2 768 \approx 9.589

These are the evaluated even-numbered expressions. Do you need further clarification on any step?


Related Questions:

  1. What are the logarithmic properties used to combine or separate logarithmic terms?
  2. How would you simplify expressions involving both addition and subtraction of logarithms?
  3. How is the change-of-base formula used to calculate logarithms with a base not in the table?
  4. What is the significance of logb1=0\log_b 1 = 0?
  5. How can exponential functions help simplify complex logarithmic expressions?

Tip: When approximating logarithms, using properties such as logb(m×n)\log_b \left( m \times n \right) can greatly simplify calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Properties of Logarithms
Approximation of Logarithmic Values

Formulas

log_b(mn) = log_b(m) + log_b(n)
log_b(m/n) = log_b(m) - log_b(n)
Change-of-base formula: log_b(x) = log_c(x) / log_c(b)

Theorems

Exponential-Logarithmic Inverse Properties

Suitable Grade Level

Grades 10-12