Math Problem Statement

Considere, no plano, o triângulo [ABC] de vértices A(1,0), B(1,2) e C(3,1). Seja T_A : R^2 → R^2 a transformação linear cuja matriz na base canônica de R^2 é M = [[2, 0], [0, 2]]. Determine os pontos transformados A', B', C' e represente o triângulo transformado no plano.

Solution

Let's analyze the problem step by step:

Problem Breakdown

  1. The initial triangle ABC\triangle ABC is defined with vertices:

    • A(1,0)A(1, 0)
    • B(1,2)B(1, 2)
    • C(3,1)C(3, 1).
  2. The linear transformation TA:R2R2T_A : \mathbb{R}^2 \to \mathbb{R}^2 is defined using a matrix: M=[2002].M = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}. This means the transformation applies scaling by a factor of 2 in both xx- and yy-directions.

  3. The transformed coordinates TA((x,y))T_A((x, y)) are calculated using matrix multiplication: TA((x,y))=M[xy].T_A((x, y)) = M \cdot \begin{bmatrix} x \\ y \end{bmatrix}.

  4. We need to:

    • Determine the transformed coordinates AA', BB', and CC',
    • Represent the transformed triangle ABC\triangle A'B'C' on the graph.

Solution Steps

Transformation of Vertices

Using the matrix M=[2002]M = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, we apply the transformation TA((x,y))T_A((x, y)) to each vertex:

  1. For A(1,0)A(1, 0): TA((1,0))=[2002][10]=[20].T_A((1, 0)) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}. So, A(2,0)A'(2, 0).

  2. For B(1,2)B(1, 2): TA((1,2))=[2002][12]=[24].T_A((1, 2)) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}. So, B(2,4)B'(2, 4).

  3. For C(3,1)C(3, 1): TA((3,1))=[2002][31]=[62].T_A((3, 1)) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}. So, C(6,2)C'(6, 2).

Final Transformed Vertices

The transformed vertices are:

  • A(2,0)A'(2, 0),
  • B(2,4)B'(2, 4),
  • C(6,2)C'(6, 2).

Graphical Representation

The transformed triangle ABC\triangle A'B'C' will be larger than ABC\triangle ABC, with its vertices located at the above-calculated points.

Would you like a detailed sketch of the transformed triangle or further explanation about the transformation process?


Expanding the Topic

Here are five related questions you could explore:

  1. What happens to the shape of the triangle if a shear transformation matrix is applied instead of scaling?
  2. How would the transformation change if the scaling factor were different in xx- and yy-directions?
  3. What is the determinant of the transformation matrix, and what does it signify geometrically?
  4. How do linear transformations affect the area of geometric shapes like triangles?
  5. What would the result be if the matrix MM included rotation components?

Tip

When working with transformations, always visualize the effect of the matrix on the unit vectors (1,0)(1, 0) and (0,1)(0, 1). This helps understand the overall geometric impact of the transformation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Transformations
Matrix Operations
Geometry

Formulas

T_A((x, y)) = M * [x, y]^T
Matrix Multiplication: [[a, b], [c, d]] * [x, y]^T = [ax + by, cx + dy]

Theorems

Linear Transformation

Suitable Grade Level

Grades 10-12