Math Problem Statement

Find the linear transformation T: R^2 → R^2 where T([1, 0]) = [3, -2], T([0, 1]) = [-4, 3], and apply it to the vector [9, -1].

Solution

The image describes a linear transformation T:R2R2T: \mathbb{R}^2 \to \mathbb{R}^2 defined by its action on two basis vectors, such that:

T([10])=[32],T([01])=[43]T\left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad T\left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 3 \end{bmatrix}

We want to find the matrix representation of the transformation TT and then use it to determine the image of another vector under TT.

Step 1: Find the Matrix Representation of TT

The matrix representation of the linear transformation TT can be determined by noting how TT acts on the standard basis vectors:

T([10])=[32],T([01])=[43].T\left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad T\left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 3 \end{bmatrix}.

This means that the columns of the matrix representation of TT are precisely these vectors:

[T]=[3423].[T] = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}.

Step 2: Apply the Matrix to the Vector

We are asked to find:

T([91]).T\left( \begin{bmatrix} 9 \\ -1 \end{bmatrix} \right).

To do this, we multiply the matrix representation of TT by the given vector:

[3423][91].\begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ -1 \end{bmatrix}.

Let's compute this product:

[39+(4)(1)29+3(1)]=[27+4183]=[3121].\begin{bmatrix} 3 \cdot 9 + (-4) \cdot (-1) \\ -2 \cdot 9 + 3 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 27 + 4 \\ -18 - 3 \end{bmatrix} = \begin{bmatrix} 31 \\ -21 \end{bmatrix}.

Conclusion

The result of the transformation is:

T([91])=[3121].T\left( \begin{bmatrix} 9 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 31 \\ -21 \end{bmatrix}.

Would you like more details on this process or have any other questions?

Related Questions:

  1. What are some properties of linear transformations in Rn\mathbb{R}^n?
  2. How can you determine if a linear transformation is invertible?
  3. How do you find the inverse of a given linear transformation matrix?
  4. What is the geometric interpretation of a linear transformation matrix?
  5. How can eigenvalues and eigenvectors of a matrix help understand its linear transformation?

Tip:

When finding the matrix of a linear transformation, remember that the columns of the matrix correspond to the images of the standard basis vectors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformations
Matrix Multiplication
Vector Spaces

Formulas

Matrix Representation of a Linear Transformation
Matrix-Vector Multiplication

Theorems

Linear Transformation Matrix Representation
Standard Basis Theorem

Suitable Grade Level

Grades 10-12, College