Math Problem Statement

Let x = [x1, x2], v1 = [-3, 5], and v2 = [2, -9], and let T : R^2 → R^2 be a linear transformation that maps x into x1*v1 + x2*v2. Find a matrix A such that T(x) = A*x for each x.

Solution

The problem asks for finding a matrix AA such that for a given vector x=[x1x2]\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, the linear transformation T ⁣:R2R2T \colon \mathbb{R}^2 \to \mathbb{R}^2 maps x\mathbf{x} to T(x)=x1v1+x2v2T(\mathbf{x}) = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2.

Here is the process for finding the matrix AA:

Step 1: Given vectors

  • v1=[35]\mathbf{v}_1 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}
  • v2=[29]\mathbf{v}_2 = \begin{bmatrix} 2 \\ -9 \end{bmatrix}

Step 2: Define the transformation

The transformation TT maps any vector x=[x1x2]\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} to: T(x)=x1v1+x2v2=x1[35]+x2[29]T(\mathbf{x}) = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 = x_1 \begin{bmatrix} -3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -9 \end{bmatrix} This can be rewritten as: T(x)=[x1(3)+x2(2)x1(5)+x2(9)]=[3x1+2x25x19x2]T(\mathbf{x}) = \begin{bmatrix} x_1(-3) + x_2(2) \\ x_1(5) + x_2(-9) \end{bmatrix} = \begin{bmatrix} -3x_1 + 2x_2 \\ 5x_1 - 9x_2 \end{bmatrix}

Step 3: Matrix Representation

We want to express this linear transformation as T(x)=AxT(\mathbf{x}) = A \mathbf{x}, where AA is the matrix that performs the transformation. From the above expression, we can see that:

Ax=[3259][x1x2]A \mathbf{x} = \begin{bmatrix} -3 & 2 \\ 5 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}

Thus, the matrix AA that represents the linear transformation is:

A=[3259]A = \begin{bmatrix} -3 & 2 \\ 5 & -9 \end{bmatrix}

Final Answer:

The matrix AA is: A=[3259]A = \begin{bmatrix} -3 & 2 \\ 5 & -9 \end{bmatrix}


Do you want further details on this solution or have any questions?

Here are 5 related questions you can explore:

  1. How does the matrix representation of a linear transformation generalize to higher dimensions?
  2. What is the geometric interpretation of the transformation represented by this matrix?
  3. Can a similar method be used for transformations in R3\mathbb{R}^3? How does the process change?
  4. How would you compute the inverse of this matrix, if it exists?
  5. How does the concept of linear combinations of vectors apply to this transformation?

Tip: To check if a matrix is a valid linear transformation matrix, you can verify if it correctly maps the standard basis vectors as expected.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Linear Transformation
Matrix Representation
Vector Spaces

Formulas

T(x) = x1*v1 + x2*v2
A = [v1, v2]

Theorems

Linear Transformation Theorem

Suitable Grade Level

College Level (Introductory Linear Algebra)