Math Problem Statement

Let T: R^4 -> R^3 be a linear transformation such that T([1, 1, 0, -2]) = [2, 3, -1] and T([0, -1, 1, 1]) = [5, 0, 1]. Find T([1, 3, -2, -4]).

Solution

To solve this problem, we need to find the image of the vector [1324]\begin{bmatrix} 1 \\ 3 \\ -2 \\ -4 \end{bmatrix} under the linear transformation T:R4R3T: \mathbb{R}^4 \to \mathbb{R}^3. We are given that

T[1102]=[231]andT[0111]=[501].T\begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} \quad \text{and} \quad T\begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}.

Step 1: Setting Up the Problem

Since TT is a linear transformation, any vector in R4\mathbb{R}^4 can be expressed as a linear combination of basis vectors. Let's express [1324]\begin{bmatrix} 1 \\ 3 \\ -2 \\ -4 \end{bmatrix} as a linear combination of [1102]\begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \end{bmatrix} and [0111]\begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix}, if possible.

Suppose: [1324]=a[1102]+b[0111]\begin{bmatrix} 1 \\ 3 \\ -2 \\ -4 \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \end{bmatrix} + b \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix}

This gives us a system of equations for aa and bb:

a = 1 \\ a - b = 3 \\ b = -2 \\ -2a + b = -4 \end{cases}$$ ### Step 2: Solving for $$a$$ and $$b$$ From the equations: 1. From $$a = 1$$, we substitute into the second equation: $$1 - b = 3 \implies b = -2$$ 2. The third equation confirms $$b = -2$$. 3. The fourth equation is also consistent: $$-2(1) + (-2) = -4$$ So, we have $$a = 1$$ and $$b = -2$$. ### Step 3: Applying the Linear Transformation Now, we use linearity to find $$T\left( \begin{bmatrix} 1 \\ 3 \\ -2 \\ -4 \end{bmatrix} \right)$$: $$T\left( \begin{bmatrix} 1 \\ 3 \\ -2 \\ -4 \end{bmatrix} \right) = a T\left( \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \end{bmatrix} \right) + b T\left( \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix} \right)$$ Substituting $$a = 1$$ and $$b = -2$$, we get: $$T\left( \begin{bmatrix} 1 \\ 3 \\ -2 \\ -4 \end{bmatrix} \right) = 1 \cdot \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} + (-2) \cdot \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$$ Calculating each component: $$= \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} + \begin{bmatrix} -10 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 - 10 \\ 3 + 0 \\ -1 - 2 \end{bmatrix} = \begin{bmatrix} -8 \\ 3 \\ -3 \end{bmatrix}$$ ### Final Answer $$T\left( \begin{bmatrix} 1 \\ 3 \\ -2 \\ -4 \end{bmatrix} \right) = \begin{bmatrix} -8 \\ 3 \\ -3 \end{bmatrix}$$ Would you like more details on any step or have any questions? ### Related Questions 1. How do we verify if a transformation is linear? 2. What are other methods for finding the image of a vector under a linear transformation? 3. How can we represent linear transformations using matrices? 4. How do we determine if a set of vectors spans a vector space? 5. What is the significance of basis vectors in linear transformations? **Tip:** When solving systems of equations, always check if each equation is consistent with your solution to avoid errors in linear combinations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformation
Linear Combinations
Vector Spaces
Systems of Linear Equations

Formulas

Linear transformation formula: T(a * v1 + b * v2) = a * T(v1) + b * T(v2)

Theorems

Linearity of Transformations
System of Equations Solving

Suitable Grade Level

Undergraduate Level (First-Year Linear Algebra)