Math Problem Statement

Let T be a linear transformation from M_{2,2} into M_{2,2} such that T([[1, 0], [0, 0]]) = [[-1, 2], [0, 1]], T([[0, 1], [0, 0]]) = [[0, 2], [1, 1]], T([[0, 0], [1, 0]]) = [[1, 2], [0, 1]], and T([[0, 0], [0, 1]]) = [[3, -1], [1, 0]]. Find T([[1, -1], [4, 3]]).

Solution

To solve this problem, we need to determine the image of the matrix [1143]\begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix} under the linear transformation TT. We know TT is a linear transformation from M2,2M_{2,2} into M2,2M_{2,2}, and it is defined by its action on the basis matrices of M2,2M_{2,2}:

  1. T([1000])=[1201]T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}
  2. T([0100])=[0211]T\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}
  3. T([0010])=[1201]T\left(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}
  4. T([0001])=[3110]T\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix}

Step-by-Step Solution

  1. Express the matrix [1143]\begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix} as a linear combination of the basis matrices: [1143]=a[1000]+b[0100]+c[0010]+d[0001]\begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}

    Solving for aa, bb, cc, and dd, we get:

    • a=1a = 1
    • b=1b = -1
    • c=4c = 4
    • d=3d = 3
  2. Apply TT to the linear combination: T([1143])=aT([1000])+bT([0100])+cT([0010])+dT([0001])T\left(\begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix}\right) = a T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) + b T\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) + c T\left(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right) + d T\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right)

  3. Substitute the values of aa, bb, cc, and dd and the images of the basis matrices: T([1143])=1[1201]+(1)[0211]+4[1201]+3[3110]T\left(\begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix}\right) = 1 \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} + (-1) \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} + 4 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + 3 \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix}

  4. Perform the matrix multiplications and additions: =[1201]+[0211]+[4804]+[9330]= \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -2 \\ -1 & -1 \end{bmatrix} + \begin{bmatrix} 4 & 8 \\ 0 & 4 \end{bmatrix} + \begin{bmatrix} 9 & -3 \\ 3 & 0 \end{bmatrix}

  5. Adding these matrices together: =[1+0+4+922+8301+0+311+4+0]= \begin{bmatrix} -1 + 0 + 4 + 9 & 2 - 2 + 8 - 3 \\ 0 - 1 + 0 + 3 & 1 - 1 + 4 + 0 \end{bmatrix}

    Simplifying, we get: =[12524]= \begin{bmatrix} 12 & 5 \\ 2 & 4 \end{bmatrix}

Final Answer:

T([1143])=[12524]T\left(\begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix}\right) = \begin{bmatrix} 12 & 5 \\ 2 & 4 \end{bmatrix}

Would you like a detailed breakdown of any specific step?


  1. What is a linear transformation?
  2. How do you determine a linear transformation using basis matrices?
  3. What is the purpose of expressing a matrix as a linear combination of basis matrices?
  4. How do you calculate the image of a matrix under a given transformation?
  5. Why is matrix addition important in transformations?

Tip: When working with transformations, always check if you’re using the correct basis.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformations
Matrix Representation
Linear Combinations

Formulas

T(A + B) = T(A) + T(B)
T(cA) = cT(A)
Expressing a matrix as a linear combination of basis matrices

Theorems

Properties of Linear Transformations
Matrix Basis Transformation

Suitable Grade Level

Undergraduate - Linear Algebra