Math Problem Statement

What is the regression equation line for the following data points:

X

1

2

3

4

5

6

7

Y

1.5

3.8

6.7

9.0

11.2

13.6

16

Solution

To find the regression line (or the line of best fit) for the given data points, we use the formula for a simple linear regression:

y=mx+by = mx + b

Where:

  • mm is the slope of the line
  • bb is the y-intercept

Step 1: Organize the data

XXYY
11.5
23.8
36.7
49.0
511.2
613.6
716.0

Step 2: Compute required values

We calculate:

  1. X\sum X (sum of XX-values)
  2. Y\sum Y (sum of YY-values)
  3. XY\sum XY (sum of the product of corresponding XX and YY-values)
  4. X2\sum X^2 (sum of squares of XX-values)
  5. Number of points (nn).

Sum (X=1+2+3+4+5+6+7=28)\text{Sum } (\sum X = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28) Sum (Y=1.5+3.8+6.7+9.0+11.2+13.6+16.0=61.8)\text{Sum } (\sum Y = 1.5 + 3.8 + 6.7 + 9.0 + 11.2 + 13.6 + 16.0 = 61.8) Sum (XY=11.5+23.8+36.7+49.0+511.2+613.6+716.0=301.6)\text{Sum } (\sum XY = 1 \cdot 1.5 + 2 \cdot 3.8 + 3 \cdot 6.7 + 4 \cdot 9.0 + 5 \cdot 11.2 + 6 \cdot 13.6 + 7 \cdot 16.0 = 301.6) Sum (X2=12+22+32+42+52+62+72=140)\text{Sum } (\sum X^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = 140) n=7n = 7

Step 3: Compute the slope (mm) and intercept (bb)

The formulas are: m=nXYXYnX2(X)2m = \frac{n \sum XY - \sum X \sum Y}{n \sum X^2 - (\sum X)^2} b=YmXnb = \frac{\sum Y - m \sum X}{n}

Substitute the values:

= \frac{2111.2 - 1730.4}{980 - 784} = \frac{380.8}{196} \approx 1.944$$ $$b = \frac{61.8 - 1.944(28)}{7} = \frac{61.8 - 54.432}{7} = \frac{7.368}{7} \approx 1.053$$ ### Step 4: Write the regression equation $$y = 1.944x + 1.053$$ ### Final Answer: The regression line is: $$y = 1.944x + 1.053$$ Would you like a deeper explanation or a graph of this data? ### Related Questions: 1. How can we interpret the slope and y-intercept in this context? 2. What is the correlation coefficient for this data set? 3. Can we predict $$y$$ for an $$x$$-value of 10 using this regression line? 4. How does the regression line minimize the sum of squared residuals? 5. What is the standard error of estimate for this regression? ### Tip: Always plot your data points along with the regression line to visually check the fit.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Regression
Statistics
Algebra

Formulas

Slope formula: m = (nΣXY - ΣXΣY) / (nΣX² - (ΣX)²)
Intercept formula: b = (ΣY - mΣX) / n
Regression equation: y = mx + b

Theorems

Least Squares Method

Suitable Grade Level

Grades 10-12