Math Problem Statement

Considérons f : ℝ³ → E, définie par f(x, y, z) → \(\begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix}\). Montrez que f est un isomorphisme et déterminez la matrice associée à f par rapport à la base canonique de ℝ³ et une base de E.

Solution

The problem involves proving that the function f:R3Ef: \mathbb{R}^3 \to E, defined by f(x,y,z)=(xyzzxyyzx)f(x, y, z) = \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix}, is an isomorphism and finding the matrix associated with ff with respect to specific bases.

Solution:


(i) Montrer que ff est un isomorphisme.

To show that ff is an isomorphism, we need to prove two properties:

  1. Linearity: The function ff is linear.
  2. Bijectivity: The function ff is injective and surjective.
1. Linearity:

f(x,y,z)f(x, y, z) maps the vector (x,y,z)R3(x, y, z) \in \mathbb{R}^3 to a 3×33 \times 3 matrix: f(x,y,z)=(xyzzxyyzx).f(x, y, z) = \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix}. This mapping is linear because:

  • f((x1,y1,z1)+(x2,y2,z2))=f(x1+x2,y1+y2,z1+z2)=f(x1,y1,z1)+f(x2,y2,z2)f((x_1, y_1, z_1) + (x_2, y_2, z_2)) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2) = f(x_1, y_1, z_1) + f(x_2, y_2, z_2),
  • f(c(x,y,z))=cf(x,y,z)f(c \cdot (x, y, z)) = c \cdot f(x, y, z) for cRc \in \mathbb{R}.

Thus, ff is a linear map.

2. Bijectivity:

To check bijectivity, we look at injectivity and surjectivity separately:

  • Injectivity: If f(x,y,z)=0f(x, y, z) = 0 (the zero matrix), then x=y=z=0x = y = z = 0. Thus, ff is injective.

  • Surjectivity: The dimension of the image of ff is equal to the dimension of R3\mathbb{R}^3, which is 3. Since ff is injective and maps to a vector space of the same dimension, it is surjective.

Thus, ff is bijective, and hence an isomorphism.


(ii) Déterminer la matrice associée à ff par rapport à la base canonique CC de R3\mathbb{R}^3 et la base B\mathcal{B} de EE.

We need to compute the matrix of ff in the canonical basis CC of R3\mathbb{R}^3 and a basis B\mathcal{B} of EE.

  1. Let the canonical basis of R3\mathbb{R}^3 be {e1,e2,e3}\{e_1, e_2, e_3\}, where: e1=(1,0,0),e2=(0,1,0),e3=(0,0,1).e_1 = (1, 0, 0), \quad e_2 = (0, 1, 0), \quad e_3 = (0, 0, 1).

  2. The images of e1,e2,e3e_1, e_2, e_3 under ff are: f(e1)=f(1,0,0)=(100010001),f(e_1) = f(1, 0, 0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, f(e2)=f(0,1,0)=(010001100),f(e_2) = f(0, 1, 0) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, f(e3)=f(0,0,1)=(001100010).f(e_3) = f(0, 0, 1) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.

  3. If the basis B\mathcal{B} of EE is formed by the matrices B1,B2,,B9B_1, B_2, \dots, B_9, we express f(e1),f(e2),f(e3)f(e_1), f(e_2), f(e_3) as linear combinations of these basis matrices and construct the matrix of ff.


Let me know if you need a detailed computation of the associated matrix or have any specific questions! Here are some related questions to deepen understanding:


5 Related Questions:

  1. What properties must a function satisfy to be an isomorphism in linear algebra?
  2. How is the matrix representation of a linear map derived in terms of given bases?
  3. What is the importance of bijectivity in proving that a map is an isomorphism?
  4. How does one compute the determinant of a linear map, and what role does it play in determining injectivity?
  5. What are some common applications of isomorphisms in higher-dimensional linear algebra?

Tip:

When determining if a linear map is an isomorphism, always start by checking the rank of the map and the dimensions of the domain and codomain.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Maps
Isomorphisms
Matrix Representation
Bases in Vector Spaces

Formulas

Matrix representation of a linear transformation
Linearity properties of functions

Theorems

Isomorphism Theorem
Properties of Linear Maps

Suitable Grade Level

Undergraduate (Linear Algebra Course)