Math Problem Statement

Seien V = ⟨(1 0), (0 1), (0 0)⟩ und W = ⟨(1 0), (0 1), (1 0)⟩ Unterräume von M_{22}(ℝ). Sei f : V → W definiert durch f((x y) (0 z)) = ((x + y) z) (z (x + y)) für alle (x y) (0 z) ∈ M_{22}(ℝ). 1. Beweisen Sie, dass f linear ist. 2. Bestimmen Sie eine Basis von V + W und von V ∩ W. 3. Bestimmen Sie eine Basis von Kern(f) und von Bild(f).

Solution

Let's solve this step-by-step:

  1. Verify Linearity of ff:

    To prove ff is linear, we need to check if ff satisfies the following properties:

    • Additivity: f(A+B)=f(A)+f(B)f(A + B) = f(A) + f(B)
    • Homogeneity: f(λA)=λf(A)f(\lambda A) = \lambda f(A)

    For A=(xy0z)A = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} and B=(xy0z)B = \begin{pmatrix} x' & y' \\ 0 & z' \end{pmatrix} in VV: f(A+B)=f((x+xy+y0z+z))=((x+x)+(y+y)z+zz+z(x+x)+(y+y))f(A + B) = f\left( \begin{pmatrix} x + x' & y + y' \\ 0 & z + z' \end{pmatrix} \right) = \begin{pmatrix} (x + x') + (y + y') & z + z' \\ z + z' & (x + x') + (y + y') \end{pmatrix} On the other hand: f(A)+f(B)=(x+yzzx+y)+(x+yzzx+y)=((x+x)+(y+y)z+zz+z(x+x)+(y+y))f(A) + f(B) = \begin{pmatrix} x + y & z \\ z & x + y \end{pmatrix} + \begin{pmatrix} x' + y' & z' \\ z' & x' + y' \end{pmatrix} = \begin{pmatrix} (x + x') + (y + y') & z + z' \\ z + z' & (x + x') + (y + y') \end{pmatrix} Thus, f(A+B)=f(A)+f(B)f(A + B) = f(A) + f(B), satisfying additivity.

    For homogeneity, let λR\lambda \in \mathbb{R}: f(λA)=f((λxλy0λz))=(λx+λyλzλzλx+λy)=λ(x+yzzx+y)=λf(A)f(\lambda A) = f\left( \begin{pmatrix} \lambda x & \lambda y \\ 0 & \lambda z \end{pmatrix} \right) = \begin{pmatrix} \lambda x + \lambda y & \lambda z \\ \lambda z & \lambda x + \lambda y \end{pmatrix} = \lambda \begin{pmatrix} x + y & z \\ z & x + y \end{pmatrix} = \lambda f(A) Hence, ff is linear.

  2. Find a Basis for V+WV + W and VWV \cap W:

    To determine V+WV + W, we combine the bases of VV and WW and identify linearly independent vectors.

    • Basis for VV: The given basis for VV is: {(1000),(0100),(0001)}\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}
    • Basis for WW: The given basis for WW is: {(1001),(0110)}\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}

    To form a basis for V+WV + W, we look at these five matrices and find the set of linearly independent ones.

    For VWV \cap W, find matrices that can be expressed both as a linear combination of VV's basis and WW's basis.

  3. Find a Basis for ker(f)\ker(f) and im(f)\text{im}(f):

    • Kernel: To find ker(f)\ker(f), solve f(A)=0f(A) = 0 for A=(xy0z)A = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}. This implies: (x+yzzx+y)=(0000)\begin{pmatrix} x + y & z \\ z & x + y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} Thus, x+y=0x + y = 0 and z=0z = 0. So, ker(f)\ker(f) consists of matrices of the form (xx00)\begin{pmatrix} x & -x \\ 0 & 0 \end{pmatrix}.

    • Image: The image im(f)\text{im}(f) is spanned by the form of matrices produced by ff. Any f(A)f(A) is of the form (x+yzzx+y)\begin{pmatrix} x + y & z \\ z & x + y \end{pmatrix}, implying the image matrices have equal diagonal entries and are symmetric.

Would you like further details on any step?

Here are related questions to expand on this topic:

  1. How do we confirm if a set of matrices forms a basis for a given subspace?
  2. What are the implications of a linear map's kernel and image in linear algebra?
  3. How can we generalize this process to higher dimensions or different types of matrices?
  4. How would we compute the rank of the map ff in this example?
  5. What are other methods to determine if a map is linear besides verifying additivity and homogeneity?

Tip: For matrix spaces, analyzing dimensions of subspaces like VV, WW, VWV \cap W, and V+WV + W can often simplify finding bases and understanding the structure of the space.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Theory
Subspaces
Linear Transformation
Kernel and Image

Formulas

Linearity: f(A + B) = f(A) + f(B) and f(λA) = λf(A)
Basis of Subspaces: V + W and V ∩ W
Kernel and Image of Linear Map: Kernel of f, Image of f

Theorems

Properties of Linear Maps (Additivity and Homogeneity)
Intersection and Sum of Subspaces
Basis and Dimension Theorem (Rank-Nullity Theorem)

Suitable Grade Level

Undergraduate - Linear Algebra